Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 6. Глобальные экологические проблемы.doc
Скачиваний:
9
Добавлен:
01.12.2018
Размер:
317.44 Кб
Скачать

6.2 Проблема «озонового слоя»

Слой атмосферы, непосредственно прилегающий к поверхности Земли, называется тропосферой. Высота тропосферы над экватором 16-18 км, в умеренных широтах 10-12 км и над полюсами 7-8 км. Тропосфера характеризуется градиентным изменением температуры с высотой, которая понижается примерно на 6,5оС на каждый километр (рис. 6.1). По величине вертикального градиента можно рассчитать температуру воздуха Th на любой высоте тропосферы по формуле:

Th = То0,01 h,

где: То - температура у земли,

= 0,65 - вертикальный температурный градиент,

h – высота, для которой рассчитывается температура, м.

В тропосфере сосредоточено ~ 80% массы всей атмосферы и 90% водяных паров. Для солнечной радиации тропосфера практически прозрачна, поэтому прогревание воздушных масс в ней происходит от поверхности Земли, поглощающей тепловую энергию Солнца, что и является основной причиной уменьшения температуры воздуха с увеличением высоты. Таким образом, температура тропосферы определяется в основном конвекцией.

Рисунок 6.1 - Зависимость давления и температуры от расстояния до поверхности земли. Стратосферный озоновый слой

Выше тропосферы до высот порядка 50 км располагается стратосфера, где сконцентрировано ~ 19 % массы всей атмосферы. Состав воздуха в стратосфере отличается от тропосферного главным образом ничтожно малым количеством водяного пара и наличием большого количества озона (О3): на высоте 20…30 км сконцентрировано до 80% всего планетарного озона. Максимальная концентрация озона наблюдается на высоте ~ 25 км. В определенных местах атмосферы содержание озона уменьшается на 40…50 %. Эти места озоносферы называют с легкой руки журналистов «озоновыми дырами».

Образование молекул озона и их взаимодействие с атомами и молекулами кислорода и «посредника» описывается циклом Чепмена:

О2 + h (квант света с 0,24 мкм) = О + О

О2 + О +М = О3 + М

О3 + h (квант света с 0,38 мкм) = О2 + О

О3 + О = 2О2

О + О + М = О2 + М

где: М – атом или молекула «посредника» (например, кислорода, азота), участвующего в энергетическом балансе реакции.

До 85-90 % атмосферного О3 – антропогенного происхождения. На концентрацию О3 в атмосфере оказывают влияние температура, сила и направленность ветра, топографические особенности и др.

Озон зачислен в «парниковые» газы, поскольку его молекула имеет полосы поглощения в длинноволновом участке спектра, следовательно, возвращает к земной поверхности часть теплового излучения. Его вклад в общий парниковый эффект атмосферы, по оценкам, составляет до 3 % коротковолнового излучения Солнца и его влияние на термический режим является определяющим.

Стратосферный озоновый слой защищает людей и живую природу от жесткого (с длиной волны менее 0,3 мкм) ультрафиолетового и мягкого рентгеновского излучения в ультрафиолетовой части солнечного спектра. Каждый потерянный процент озона в масштабах планеты вызывает до 150 тыс. дополнительных случаев слепоты из-за катаракт, на 2,6% увеличивает число раковых заболеваний кожи. Установлено, что жесткий ультрафиолет подавляет иммунную систему организма.

Взаимодействие озона с атомами и молекулами атмосферы и ее техногенными загрязнениями в присутствии солнечной радиации приводит к разрушению озонового слоя.

Запуск мощных ракет, ежедневные полеты реактивных самолетов в высоких слоях атмосферы, испытания ядерного и термоядерного оружия, ежегодное уничтожение природного озонатора — миллионов гектаров леса — пожарами и хищнической рубкой, массовое применение фреонов в технике, парфюмерной и химической продукции в быту — главные факторы, разрушающие озоновый экран Земли.

В последние годы над Северным и Южным полюсами возникли «озоновые дыры» площадью свыше 10 млн. км2 каждая, появились громадные «озоновые дыры» над многими странами Европы и Россией. Разрушение озонового экрана Земли сопровождается рядом опасных явных и скрытых негативных воздействий на человека и живую природу.

Прорыв через «озоновые дыры» солнечных рентгено- и ультрафиолетовых лучей, энергия фотонов которых превышает энергию лучей видимого спектра в 50…100 раз, увеличивает число мощных лесных пожаров.

В 1996 г. Нобелевской премией по химической экологии удостоены ученые-химики Шервуд Роуланд, Марио Малина из Калифорнийского университета в Беркли (США) и Поль Крутцен из Германии за научную гипотезу, выдвинутую ими еще в 1974 г. Их догадка состоит в том, что разрушителями озона являлись синтезированные человеком химические вещества, получившие название хлорфторуглероды (ХФУ).

Озоноразрушающие вещества (ОРВ) - инертные, негорючие, неядовитые, несложные в производстве, получили широкое распространение — в баллончиках с аэрозолями различного назначения, а так же как охлаждающие жидкости в холодильниках и кондиционерах, как растворители (тетрахлорметан, метилхлороформ, бромистый метил), в производстве пестицидов. Бромистый метил используется в качестве дезинфицирующего вещества для почв и товаров (включая карантинную обработку некоторых продуктов, предназначенных для международной торговли), применяется в качестве добавки к автомобильному топливу. Из бромистого метила высвобождается бром, который в 30...60 раз разрушительнее для озона, чем хлор. Другие химические соединения, разрушающие озоновый слой, используются в баллонах для тушения пожара, при изготовлении полистироловых стаканчиков и современных упаковок для фасовки продуктов и полуфабрикатов.

Механизм действия фреонов таков: попадая в верхние слои атмосферы, эти вещества, инертные у земной поверхности, преображаются. Под воздействием ультрафиолетового излучения, присутствующего за озоновым слоем, химические связи в молекулах ХФУ нарушаются. В результате выделяется хлор, который при столкновении с молекулой озона выбивает из нее один атом. Озон превращается в обычный кислород О2 и атомарный кислород О. Хлор же, соединившись временно с атомарным кислородом, вскоре опять оказывается свободным и «пускается в погоню» за следующей «жертвой». Его активности хватает, чтобы разрушить десятки тысяч молекул озона. Каталитическая цепная реакция имеет вид:

Сl + О3 = СlO + O2

СlO + O = Сl + O2

По данным российских ученых, «озоновые дыры» над арктическими и антарктическими полюсами нашей планеты создают газы, законсервированные в вечной мерзлоте. Об этом свидетельствуют результаты научной экспедиции Владивостокских и московских ученых на гидрографическом судне «Николай Коломейцев» в 2000 г. Одна из основных задач состоявшейся экспедиции — оценка влияния деградации вечной мерзлоты на биохимические циклы прибрежной зоны арктического шельфа. Здесь происходят очень сложные процессы. Когда наступает лето, принося с собой плюсовую температуру, нагревшиеся морские волны растопляют у берега вечную мерзлоту и «съедают» сушу со скоростью 5…7 м за сезон. За несколько лет эти расстояния значительно увеличиваются.

Так, подсчитано, что 10 тыс. лет назад арктическое побережье нынешней России было на 200 км ближе к Северному полюсу. При этом происходят нежелательные процессы: разрушаясь, вечная мерзлота отдает «законсервированные» в ней органические вещества, причем с большой скоростью — в 10…20 раз быстрее, чем они выделяются в зимнее время. Происходит буквально фонтанный выброс в атмосферу, в частности, двуокиси углерода СО2. Скапливаясь над побережьем шельфа, двуокись углерода еще и ускоряет таяние вечной мерзлоты, способствует выбросу других веществ, в том числе метана.

При таянии вечной мерзлоты выделяется большое количество активных веществ, так называемых радикалов, которые, поднимаясь на большую высоту, и разрушают озоновый слой. Именно поэтому озоновые дыры появляются над полюсами — только здесь мерзлота выделяет радикалы. И разрушение озонового слоя шло бы гораздо интенсивнее, если бы на пути гидроксильных радикалов не встал бы метан. При недостатке кислорода вследствие парникового эффекта метан окисляется, забирая на себя радикалы, и замедляет разрушение озонового слоя.

С одной стороны, метан усиливает вредный парниковый эффект, с другой — спасает от разрушения озоновый слой. Теперь понятно, почему озоновые дыры то появляются, то исчезают и постоянно меняют размеры. Все зависит от климата.

По данным Центральной аэрологической обсерватории Росгидромета, в середине августа 2000 г. озоновая дыра над Антарктидой начала расти. В результате ее размер достиг рекордных размеров 28,3 млн. км2, что в 3 раза больше территории США. Для сравнения — еще 10—15 лет назад она составляла 22 млн. км2. В октябре 2000 г. она приблизилась к значениям 1999 г. и составила 23—24 млн км2, а минимальное значение содержания озона составило 100 единиц Добсона, что в 3 раза меньше нормы.

Если так будет продолжаться и дальше, то уже к середине XXI столетия человечество может оказаться на пороге глобальной экологической катастрофы с непредсказуемыми тяжелыми последствиями. Расчеты ученых показывают, что при продолжении массовых выбросов ХФУ озоновый слой еще при жизни нынешнего поколения истончится на 20%. Одно из последствий этого иллюстрирует такой пример: всего 1%-ное сокращение озона вызывает 4%-ный скачок в распространении рака кожи. Только в США этим недугом ежегодно заболевают около 200 тыс. человек. Вызывая рак кожи, ультрафиолетовые лучи одновременно подавляют иммун­ную систему, снижают сопротивляемость организма.

По данным Мексиканского университета (штат Сонора), самыми распространенными недугами, появляющимися у людей в результате воздействия ультрафиолетовых лучей в связи с разрушением озонового слоя, являются катаракты, ухудшение состояния сетчатки и глазного дна, различные наросты и новообразования. И если в случае катаракт и новообразований может помочь постоянно развивающаяся хирургия глаза, то процесс ухудшения состояния (износа) сетчатки и глазного дна практически необратим.

Раньше подобные заболевания проявлялись к старости, однако сегодня первые признаки этих тяжелых недугов демонстрируют все больше юношей и девушек в возрасте от 20 до 25 лет. К первым признакам медики относят, прежде всего, утомляемость глаз при отсутствии видимой нагрузки, раздражения конъюнктивы, появление красного пятна на глазном дне после нагрузки на глаза, к примеру чтения или просмотра телепередач.

Но этим губительное воздействие ультрафиолетового излучения не ограничивается. Повышение его уровня способно вызвать деградацию экосистем и генофонда флоры и фауны, снижение урожайности сельскохозяйственных культур и продуктивности Мирового океана. К ультрафиолетовым лучам очень чувствительны хвойные деревья и злаки, овощи и бахчевые культуры, сахарный тростник и бобовые. Данные экспериментов свидетельствуют, что рост некоторых растений сдерживается уже нынешним уровнем радиации.

Накопленные новые экспериментальные материалы позволяют судить об ингибирующем воздействии УФ-радиации на фитобактерии и зоопланктон, а также организмы нейстона. Отмечена неодинаковая устойчивость морских организмов к повреждающему действию УФ-радиации. Показано, что при снижении содержания озона в озоновом слое на 16,5% (в результате усиления антропогенного воздействия) первичная продуктивность в Мировом океане может уменьшиться на 5% по сравнению с современным уровнем. Необходимо отметить, что любые глобальные изменения в биомассе или в продукции планктонных организмов могут привести к изменению биохимического цикла углерода в океане и нарушению баланса окиси углерода между океаном и атмосферой.

Воздействие УФ-излучения приводит к мутациям на генном уровне. Главной мишенью излучения становятся молекулы ДНК — носители генетической информации организма. До 90% всех повреждений возникает при облучении светом длиной волны около 300 нм. Этот показатель быстро снижается при увеличении или уменьшении длины волны. Именно в этой области длин волн лежат и границы проникаемости озонового слоя атмосферы Земли. По оценкам американских исследователей, уменьшение озонового слоя на 50% приведет к возрастанию повреждений ДНК в 2,5 раза, что в свою очередь может повлечь за собой увеличение частоты заболеваний раком кожи в 8 раз.