Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
раздел 4.doc
Скачиваний:
10
Добавлен:
20.12.2018
Размер:
406.02 Кб
Скачать

4.3. Понятие собственного полупроводника. Зависимость концентрации носителей от температуры.

Собственными полупроводниками или полупроводниками типа i называются чистые полупроводники, не содержащие примесей.

(В химии валентными электронами называют электроны, находящиеся на внешней, или валентной, оболочке атома. Валентные электроны определяют поведение химического элемента в химических реакциях. Чем меньше валентных электронов имеет элемент, тем легче он отдаёт эти электроны (проявляет свойства восстановителя) в реакциях с другими элементами. И наоборот, чем больше валентных электронов содержится в атоме химического элемента, тем легче он приобретает электроны (проявляет свойства окислителя) в химических реакциях при прочих равных условиях)

Собственные полупроводники имеют кристаллическую структуру, характеризующуюся периодическим расположением атомов в узлах пространственной кристаллической решетки. В такой решетке каждый атом взаимно связан с четырьмя соседними атомами ковалентными связями (рис. 1.1), в результате которых происходит обобществление валентных электронов и образование устойчивых электронных оболочек, состоящих из восьми электронов. При температуре абсолютного нуля (T=0° K) все валентные электроны находятся в ковалентных связях, следовательно, свободные носители заряда отсутствуют, и полупроводник подобен диэлектрику. При повышении температуры или при облучении полупроводника лучистой энергией валентный электрон может выйти из ковалентной связи и стать свободным носителем электрического заряда. (Рис. 1.2). При этом ковалентная связь становится дефектной, в ней образуется свободное (вакантное) место, которое может занять один из валентных электронов соседней связи, в результате чего вакантное место переместится к другой паре атомов. Перемещение вакантного места внутри кристаллической решетки можно рассматривать как перемещение некоторого фиктивного (виртуального) положительного заряда, величина которого равна заряду электрона. Такой положительный заряд принято называть дыркой.

Отметим, что процесс образования свободного электрона и дырки принято называть генерацией. Поскольку в рассматриваемом случае генерация происходит под действием тепла, то ее можно назвать термогенерацией.(Появление электрона в зоне проводимости и дырки в валентной зоне на энергетической диаграмме )

Таким образом, за счет термогенерации в собственном (беспримесном) полупроводнике, который принято обозначать буквой i, образуются два типа подвижных носителей заряда: свободные электроны n и дырки p, причем их число одинаково (ni = pi). Эти носители заряда иногда называют собственными, а электропроводность, ими обусловленную, - собственной электропроводностью.

4.4. Что такое легированный (примесный) полупроводник. Объяснить понятие n и p типов проводимости.

Примесными полупроводниками принято называть полупроводники, электропроводность которых обусловлена носителями заряда, образующимися при ионизации атомов. Если в кремний ввести атом пятивалентного элемента (например, фосфора), то четыре из пяти валентных электронов этого элемента вступят в связь с четырьмя соседними атомами кремния (подобно атомам собственного полупроводника). Пятый е электрон будет в данном случае избыточным. Он оказывается очень слабо связанным со своим атомом, поэтому оторвать его от атома и превратить в свободный носитель заряда можно даже при воздействии малой тепловой энергии.

На энергетической диаграмме, соответствующей рассматриваемому случаю (рис. 1.3), обозначен разрешенный энергетический уровень εд, который принес с собой атом фосфора. На этом уровне при очень низкой температуре и будет находиться избыточный электрон фосфора. При незначительном повышении температуры он переходит в зону проводимости и становится свободным. Нейтральный атом фосфора при этом превращается в положительный ион (его заряд обусловлен отсутствием валентного электрона). Количество энергии, необходимое для отделения избыточного электрона и образования иона, называется энергией активации (ионизации) примеси . Отметим, что ион прочно связан с кристаллической решеткой.

Таким образом, появление в кремнии атома фосфора привело к образованию в зоне проводимости свободного электрона. Образование данного электрона не связано с существованием дырки.

Атомы пятивалентной примеси принято называть донорами. Примесные разрешенные уровни, приносимые донорами, называют донорными. Примесные полупроводники, полученные за счет введения доноров, называются электронными, или полупроводниками n-типа. Электропроводность электронных полупроводников определяется свободными электронами, которые здесь являются основными носителями заряда. Дырки в полупроводнике n-типа являются неосновными носителями заряда. Дырок здесь очень мало (nn ››рn), но они все-таки есть

Итак, за счет введения донорной примеси образуется электронный полупроводник, электропроводность которого определяется электронами, причем число свободных электронов практически равно числу ионизированных доноров.

Рассмотрим теперь дырочный полупроводник или полупроводник р-типа. Такой полупроводник получается за счет введения в него трехвалентных атомов примеси (например, бора). Атомы трехвалентной примеси принято называть акцепторами.

Находясь среди атомов кремния, атом бора образует только три заполненные валентные связи. Четвертая связь оказывается незаполненной, однако она не несет заряда, т. е. атом бора является электрически нейтральным. При воздействии даже небольшой тепловой энергии электрон одной из соседних заполненных валентных связей кремния может перейти в эту связь. Во внешней оболочке атома бора появляется лишний электрон, т. е. атом бора превращается в отрицательный ион. Ионизированная связь атома кремния (из которой электрон перешел к атому бора) несет собой уже положительный заряд, являясь дыркой.

На энергетической диаграмме, соответствующей рассматриваемому здесь случаю (рис. 1.4), обозначен разрешенный энергетический (акцепторный) уровень εА, который принес с собой атом бора. Этот уровень будет не заполнен лишь при очень низкой температуре. При небольшом повышении температуры один из электронов валентной зоны переходит на акцепторный уровень, затратив при этом небольшую энергию, равную энергии активации примеси (∆εА ›› 0,1эВ). Таким образом, получаются дырка (в валентной зоне) и ионизированный акцептор.

Электропроводность дырочного полупроводника определяется дырками, которые здесь являются основными носителями заряда. Электроны в полупроводнике р-типа являются неосновными носителями и их очень мало (рр ›› np).Итак, за счет введения и активации акцепторной примеси образуется дырочный полупроводник, электропроводность которого определяется дырками, причем число и практически равно числу ионизированных акцепторов. При рассмотрении примесных полупроводников обычно используют понятие «концентрация примеси». Концентрацией называется число зарядов или частиц в единичном объеме (например, в 1 см3). Понятно, что чем больше концентрация доноров Nд, тем больше и концентрация электронов, а чем больше концентрация акцепторов NА, тем больше концентрация дырок в полупроводнике.

Если оба типа примеси находятся в равном количестве (Nд = NА) принято называть компенсированным. Компенсированный проводник похож на собственный (nk = pk), но имеет ряд интересных свойств и отличий.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]