Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие Основы энергосбережения.doc
Скачиваний:
63
Добавлен:
20.12.2018
Размер:
1.84 Mб
Скачать

5.4.7 Вторичные энергетические ресурсы их классификация и использование

Одним из важных факторов экономии ТЭР является использование вторичных энергетических ресурсов (ВЭР), образующихся в одних технологических установках, процессах и направляемых для энергоснабжения других агрегатов и процессов.

ВЭР по видам энергии подразделяются на горючие, тепловые и избыточного давления (таблица 5.1).

Таблица 5.1- Классификация ВЭР по видам и направлениям их использования

Вид ВЭР

Носители ВЭР

Энергетический потенциал

Направление и использование способов утилизации

Горючие

Твёрдые, жидкие, газооб­разные отходы

Низшая теплота сгорания

Топливное сжигание в топливоиспользующих установках

Тепловые

Отходящие газы, охлаждаю­щая вода, отходы произ­водств, промежуточные про­дукты, готовая продукция

Энтальпия

Тепловое. Выработка в теплоутилизационных установках водяного пара, горячей воды, использование для покрытия потребности в тепле

Тепловые

Отработанный и попутный пар

Энтальпия

Тепловое и комбинированное покрытие потребности, выработка электро­энергии в конденсационном или теп­лофикационном турбоагрегате

ВЭР избы­точного давлен.

Газы с избыточным давле­нием

Работа изо-тропного рас­ширения

Электроэнергетическое. Выработка электроэнергии в газовом утилиза­ционном турбоагрегате

Горючие (топливные) ВЭР - это горючие газы и отходы одного производства, которые могут быть применены непосредственно в виде топлива в других производствах. Это доменный газ в металлургии; щепа, опилки, стружка в деревообрабатывающей промышленность; твёрдые, жидкие промышленные отходы в химической и нефтеперерабатывающей промышленности и т. д.

Тепловые ВЭР - это физическая теплота отходящих газов техноло­гических агрегатов основной, побочной, промежуточной продукции и отходов производства; теплота золы и шлаков, горячей воды и пара, отработанных в технологических установках; теплота рабочих тел систем охлаждения техно­логических установок. Тепловые ВЭР могут использоваться как непосредст­венно в виде теплоты, так и для раздельной или комбинированной выработки теплоты, холода, электроэнергии в утилизационных установках.

ВЭР избыточного давления - это потенциальная энергия по­кидающих установку газов, воды, пара с повышенным давлением, которая может быть ещё использована перед выбросом в атмосферу. Основное на­правление таких ВЭР - получение электрической или механической энергии.

Температура отходящих газов различных промышленных печей и нагре­вательных устройств колеблется от 800 ... 900°С (в печах с регенераторами) до 900 ... 1200 °С в термических, прокатных и кузнечных (без регенерации), что позволяет в котлах-утилизаторах вырабатывать пар высоких параметров для технологических нужд. Кроме того, поскольку нагревательные печи, как правило, оборудованы системой охлаждения отдельных элементов конст­рукции, при испарительном охлаждении можно получить пар давлением до 4,5 МПа, который используется и в энергетических целях. Так как темпера­тура уходящих газов после котлов-утилизаторов всё ещё достаточно высока (около 200 ... 250 °С), их теплоту целесообразно применять для коммуналь­но-бытовых нужд или отопления (нагрева воды).

На предприятиях машиностроения в настоящее время тепловыми отхо­дами являются физическая теплота уходящих газов, теплота охлаждения на­гревательных и термических печей, плавильных агрегатов, вагранок и др.

В промышленности строительных материалов тепловые ВЭР образуются при обжиге цементного клинкера и керамических изделий, производстве стекла, кирпича, извести, огнеупоров, выплавке теплоизоляционных мате­риалов. К ним относятся физическая теплота уходящих газов различных пе­чей (туннельных, шахтных, вращающихся) и т. д.

Крупными потребителями пара различных параметров, электроэнергии, горячей и тепловой воды, а также холода являются почти все отрасли пище­вой промышленности, поэтому и тепловые ВЭР предприятий пищевой про­мышленности также весьма разнообразны. Это, прежде всего, теплота отхо­дящих горячих газов и жидкостей; жидких и твёрдых отходов производства; отработанного пара силовых установок и вторичного пара, который получа­ется при выпаривании растворов, ректификации и высушивании; тепловых установок; теплота, содержащаяся в продуктах производства.

Вторичные энергоресурсы имеются также на тепло- и гидроэлектростан­циях. На гидроэлектростанциях отходы теплоты образуются в результате теп­ловыделения в электрогенераторах. Для тепловых электростанций наиболее существенный источник ВЭР - низкопотенциальная теплота нагретой охлаж­дающей воды конденсационных устройств, с которой может теряться до 50 % теплоты топлива, расходуемого на электростанции. Источником ВЭР счита­ются также дымовые газы котельных установок на паротурбинных станциях или отходящие продукты сгорания на газотурбинных установках.

Для использования ВЭР применяются утилизационные установки, пред­ставляющие собой устройства для выработки энергоносителей (водяного пара, горячей и охлаждённой воды, электроэнергии) за счёт снижения энер­гетического потенциала ВЭР. К основным видам оборудования, приме­няемого для утилизации ВЭР, относятся:

-котлы-утилизаторы;

-установки испарительного охлаждения;

-экономайзеры;

  • утилизационные абсорбционные холодильные установки;

  • теплообменники;

  • водоподогреватели;

  • тепловые насосы;

  • утилизационные турбогенераторы и др.

Трансформаторы теплоты и тепловые трубы, тепловые насосы

Трансформаторами теплоты называются устройства, служащие для переноса тепловой энергии от тела с более низкой температурой (тепло­отдатчика) к телу с более высокой температурой (теплоприемнику). Они подразделяются на холодильные установки и теплонасосные установки.

В холодильных установках температура теплоотдатчика ниже тем­пературы окружающей среды Т0(ТН < Т0), тогда как температура теплоприемника равна температуре окружающей среды.

В теплонасосных установках температура теплоотдатчика равна или несколько выше температуры окружающей среды, тогда как температура теплоприёмника значительно выше температуры окружающей среды.

Трансформатор теплоты может работать как в режиме холодильной установки, так и в режиме теплового насоса, либо одновременно в двух режи­мах. Такой процесс называется комбинированным. В комбинированной ус­тановке происходит одновременно выработка теплоты и холода.

Тепловые насосы являются разновидностью трансформаторов теплоты и предназначены для получения теплоносителя среднего и повышенного по­тенциала, используемого на тепловом потреблении. Тепловой насос представляет устройство для переноса тепловой энергии от теплоотдатчика с низкой температурой к теплоприемнику с высокой температурой. Принцип работы его тот же, что и компрессионного холодильника, с той разницей, то назначение холодильника заключается в производстве холода, а теплового насоса - в производстве теплоты

В холодильнике компрессор сжимает газ, обладающий определенными свойствами, и нагнетает его в конденсатор, охлаждаемый водой или воздухом. При охлаждении газ конденсируется и просачивается через дросселирующий клапан, поступает в испаритель. Здесь жидкость опять переходит в газообразное состояние и обратно засасывается в компрессор для сжатия. На испарение расходуется тепловая энергия, которая поступает от охлаждаемой среды.

Тепловой насос в отличие от холодильника отдает теплоту от конденса­тора на нагревание теплотранспортирующей среды, которая переносит тепло к месту его использования в то время как к испарителю подводится теплота от внешнего источника. Когда компрессор приводится в действие элек­трическим двигателем или другим механическим приводом, то такой тепло­вой насос называется компрессорным. Когда для привода компрес­сора используется тепловая энергия и в рабочем цикле участвует пара рабо­чих сред, состоящая из хладоносителя и абсорбента, то тепловой насос называется абсорбционным. Коэффициент полезного действия теплового насоса равен отношению тепловой энергии, полу­ченной рабочей жидкостью (газом) в испарителе, к электрической энергии или другой, использованной для приведения в действие компрессора. Практически тепловые насосы, приводимые в действие при помощи электродвигателя, позволяют увеличить количество получае­мой тепловой энергии в 2,5-3,3 раза по сравнению с тепловым эквивалентом электрической энергии, затрачиваемой на приведение в действие теплового насоса.

Тепло­вые насосы можно использовать в качестве индивидуальных систем обогрева жилых домов, складских помещений, отдельно стоящих зданий и сооружений, насосных (канализа­ционных, водоснабжения) и т. п. Так, для теплоснабжения отдельно стоящих различных насосных станций в настоящее время, как правило, используют электрокалориферы или различные теплоэлектронагреватели (ТЭНы).

Тепловая труба представляет собой герметизированную конструкцию (трубу), частично заполненную жидким теплоносителем. Она способна передавать большие тепловые мощности при малых градиентах температуры.

Высокая теплопередающая способность ее достигается за счет того, что в тепловой трубе осуществляется конвективный перенос теплоты, сопровождаемый фазовыми переходами (испарением и конденсацией) жидкости - теплоносителя. При подводе теплоты к одному концу тепловой трубы жидкость нагревается, закипает и превращается в пар. При этом она поглощает большое количество теплоты, которое переносится паром к другому, более колодному концу трубы, где пар конденсируется и отдает поглощенную те­плоту. Далее сконденсированная жидкость опять возвращается в зону испа­рения. Этот возврат может осуществляться разными способами. Самый простой из них заключается в использовании силы тяжести. При вертикальном расположении тепловой трубы, когда зона конденсации находится выше зо­ны испарения, жидкость стекает вниз непосредственно под действием силы тяжести. Такой вариант тепловой трубы называется термосифоном.

В наиболее распространенных типах тепловых труб для возврата жидкости в зону испарения используют капиллярные эффекты. Для этого на внутренней поверхности тепловой трубы располагают слой капил­лярно-пористой структуры (фитиль), по которому под действием капилляр­ных сил происходит обратное движение жидкости. Фитиль может быть вы­полнен из нескольких слоев тонкой сетки. Из трубы откачивается воздух, и она плотно закрывается.

В тепловой трубе различают три участка: зону подвода теплоты, или участок испарения; зону переноса теплоты, или адиабатный участок; зону отвода теплоты, или участок конденсации.

Теплоносителями в тепловой трубе могут выступать различные вещества: ацетон, аммиак, фреоны, вода, ртуть, индий, цезий, калий, натрий, литий, свинец, серебро и неорганические соли.

Основными преимуществами тепловых труб являются: высокая эффективность теплопередачи, автономность работы, малая масса и габари­ты, высокая надежность, возможность реализации сложных теплопередающих функций, высокая изотермичность поверхности трубы. Для изготовле­ния корпусов и капиллярных структур используются стекло, керамика, раз­личные металлы и сплавы.

Наиболее характерными областями применения тепловых труб являются энергетика, машиностроение, электроника, химическая про­мышленность, сельское хозяйство. В сельском хозяйстве применяются теп­лообменники на тепловых трубах при утилизации теплоты выбросного воз­духа от животноводческих помещений (тип УТ-12 и т. д.). Теплообменник такого типа является разновидностью рекуперативного аппарата с промежу­точным теплоносителем. Конструктивно теплообменники выполняются из набора тепловых труб. В зависимости от агрегатного состояния теплоноси­тели, омывающие испарительную и конденсационную зоны, разделяются на три типа: газ - газ (воздух - воздух); газ - жидкость; жидкость - жидкость.

Использование тепловых труб при утилизации ВЭР позволяет не только повысить эффективность работы энергетических установок, но и во многих случаях уменьшить загрязнение окружающей среды.