Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Optika.doc
Скачиваний:
50
Добавлен:
24.12.2018
Размер:
603.65 Кб
Скачать

9. Поглощение света. Закон Бугера-Ламберта-Бэра. Оптическая плотность, пропускаемость.

Интенсивность света, распространяющегося в среде, может уменьшаться из-за поглощения и рассеяния его молекулами вещества. Поглощением света называют ослабление интенсивности све­та при прохождении через любое вещество вследствие превраще­ния световой энергии в другие виды энергии. Поглощение кванта света происходит при его неупругом столкновении с молекулой, приводящем к передаче энергии фотона веществу, и является случайным событием. Вероятность поглощения кванта света образцом вещества толщиной I оценивается величиной коэффициента поглощения 1 - Т, равного отношению интенсивностей поглощенного света I = 10~ I к интенсивности падающего I0: 1 – Т=(I0 – I)/I0. где I — интенсивность прошедшего света, Т = I/I0 - коэффициент пропускания. В результате поглощения интенсивность света при прохождении через вещество уменьшается.

Поглощение энергии света в веществе описывается законом Бугера: I=I0e- l . Коэф­фициент kλ называют натуральным показателем поглощения, его величина обратна расстоянию, на котором интенсивность света ослабляется в результате поглощения в среде в е раз.

Зависимостью коэффициента поглощения от длины волны объясняется окрашенность поглощающих тел. Зависимость коэффициента поглощения от длины волны света используется для изготовления светофильтров, которые в соответствии с химическим составом пропускают свет только определенных длин волн, поглощая остальные. 

Зако́н Бугера — Ламберта — Бера — физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.

Закон выражается следующей формулой: I = I0e~snl. В это уравнение входит параметр s, который отражает способность молекул поглощать монохроматический свет используемой длины волны.

Более приняты молярные концентрации С = n/NA, откуда п = CNa. Преобразуем произведение sn = sCNA = χλС, где χλ = sNA — натуральный молярный показатель поглощения. Его физический смысл — суммарное эффективное сечение поглощения всех моле­кул одного моля вещества. Если молекулы, поглощающие кван­ты, находятся в растворителе, который не поглощает свет, то можно записать в виде I= I0eχλCl. Эта формула выражает закон БугераЛамбертаБера. В лабо­раторной практике этот закон обычно выражают через показа­тельную функцию с основанием 10: I = I0* 10~εСl,

где ε= χλ /ln10 — молярный показатель поглощения. Закон Бугера—Ламберта—Бера используют для фотометрического определения концентрации окрашенных веществ. Для этого непосредственно измеряют потоки падающего и прошедшего через раствор монохроматического света (концентрационная колориметрия), однако определенный таким образом коэффициент пропускания Т (или поглощения 1 - Т) неудобен, так как он из-за вероятностного характера процесса связан с концентрацией нелинейно. Поэтому в количественном анализе обычно определяют оптическую плотность (D) раствора, представляющую десятичный логарифм величины, обратной коэффициенту пропускания, D = lgl/T = lg I0/I = εСl.

Закон Бугера—Ламберта—Бера выполняется не всегда. Он справедлив при следующих предположениях: 1) используется монохроматический свет; 2) молекулы растворенного вещества в растворе распределены равномерно; 3) при изменении концентрации характер взаимодействия между растворенными молекулами не меняется (иначе фотофизические свойства вещества, в том числе и значения вис, будут изменяться); 4) в процессе измерения не происходят химические превращения молекул под действием света; 5) интенсивность падающего света должна быть достаточно низка (чтобы концентрация невозбужденных молекул практически не уменьшалась в ходе измерения).

Зависимости s, χ, ε или D от дли­ны волны света называют спектрами поглощения вещества. Спектры поглощения являются источниками информации о состоянии вещества и о структуре энергетических уровней атомов и молекул. Спектры поглощения используют для качественного анализа растворов окрашенных веществ.

10. Тепловое излучение. Абсолютно черное тело, серое тело…

Теплово́еизлуче́ние — электромагнитное излучение с непрерывным спектром, испускаемое нагретыми телами за счёт их тепловой энергии.Примером теплового излучения является свет от лампы накаливания.Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно чёрного тела, описывается законом Стефана — Больцмана.Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа.Тепловое излучение является одним из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции).Равновесное излучение — тепловое излучение, находящееся в термодинамическом равновесии с веществом.Абсолютно чёрное тело — физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план).Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (то есть имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце.Температурный интервал в Кельвинах

Цвет:до 1000 Красный1000—1500 Оранжевый1500—2000 Жёлтый2000—4000 Бледно-жёлтый4000—5500 Желтовато-белый5500—7000 Чисто белый7000—9000 Голубовато-белый9000—15000 Бело-голубой15000—∞ Голубой

  1. Закон Стефана — Больцмана — закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона:

Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела:

где  - степень черноты (для всех веществ , для абсолютно черного тела ). При помощи закона Планка для излучения, постояннуюσ можно определить как

где  — постоянная Планка, k — постоянная Больцмана, c — скорость света.

Численное значение  Дж·с−1·м−2 · К−4.

  1. Закон излучения Кирхгофа — физический закон, установленный немецким физиком Кирхгофом в 1859 году.

В современной формулировке закон звучит следующим образом:

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при даннойтемпературе для данной частоты и не зависит от их формы и химической природы.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела . С другой стороны, каждое нагретое тело излучает энергию по некоторому закону , именуемым излучательной способностью тела.

Величины  и  могут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]