Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Техника высоких напряжений конспект лекций.doc
Скачиваний:
17
Добавлен:
14.04.2019
Размер:
1.44 Mб
Скачать

Контрольные вопросы

1. Опишите конструктивные особенности построения изоляции силовых трансформаторов.

2. Как выполняется изоляция высоковольтных вводов?

3. Каким образом устроена изоляция силовых конденсаторов?

4. Каково устройство силовых кабелей, как выполнена их изоляция?

Испытания изоляции

4. Дефекты изоляции и механизмы их возникновения

В процессе эксплуатации на изоляцию воздействуют электрические, механические и тепловые нагрузки, вызывающие постепенное ухудшение ее свойств, связанное с уменьшением сопротивления изоляции, ростом диэлектрических потерь, снижением электрической прочности. Процесс ухудшения свойств называют старением изоляции.

Эти изменения носят, как правило, необратимый характер и завершаются пробоем изоляции, что ограничивает сроки службы изоляционных конструкций.

Различают четыре основных вида воздействия на изоляцию и четыре процесса старения изоляции: электрические нагрузки, связанные с возможной ионизацией при большой напряженности электрического поля - электрическое старение изоляции; тепловые нагрузки, приводящие постепенному разложению или появлению трещин в изоляции - тепловое старение изоляции; механические нагрузки, связанные с воникновением и развитием трещин в твердой изоляции - механическое старение;

проникновение влаги из окружающей среды - увлажнение изоляции.

         Возникающие в изоляции дефекты подразделяются на сосредоточенные (трещины, газовые включения, эрозия, увлажнение небольшого объема изоляции) и распределенные, охватывающие значительный объем или поверхность изоляции.

         Электрическое старение твердой изоляции происходит из-за возникновения разрядных процессов в толще изоляции. Электрическое старение может иметь место при средней напряженности электрического поля на промежутке, много меньшей (в 5..20 раз) кратковременной электрической прочности изоляции. С увеличением напряжения темпы электрического старения возрастают.

Основной причиной электрического старения внутренней изоляции являются частичные разряды, то есть такие разрядные процессы в изоляции, которые распространяются лишь на часть изоляционного промежутка. Они возникают в ослабленных местах изоляции: в газовых включениях, в местах резного усиления напряженности поля.

Наибольшую опасность представляют частичные разряды в газовых включениях, так как они возникают при меньших напряжениях, чем разряды в жидких или твердых компонентах твердой изоляции. Последнее обстоятельство связано с меньшей диэлектрической проницаемостью газового промежутка и соответственно большей напряженностью электрического поля в нем, а также с малой электрической прочностью газа по сравнению с твердой или жидкой изоляцией.

         Закономерности развития частичных разрядов можно проиллюстрировать схемой замещения, изображенной на рис. 4.1, где изображен газовый пузырь в твердой изоляции и схема замещения изоляции.

Рис. 4.1. Схема развития частичных разрядов в газовом включении

На рис. 4.1 Cв - емкость газового включения, Ст - емкость части изоляции, включенной последовательно с газовым включением, Ca - емкость оставшегося массива изоляции. При подаче на изоляцию переменного напряжения на воздушном включении также будет изменяющееся во времени напряжение, определяемое емкостным делителем:

,

и при достижении этим напряжением пробивного напряжения газового включения Uв-пр происходит пробой газового включения с резким снижением напряжения на нем до уровня напряжения гашения Uв-г , которое меньше пробивного напряжения.

После этого, если напряжение на всей изоляции продолжает возрастать, то снова начинается рост напряжения и на газовом включении и может произойти новый пробой, то есть в газовом включении происходят многократные пробои промежутка.

Графическое изображение зависимости напряжений от времени показаны на рис. 4.2 при условии подачи напряжения в нулевой момент времени.

Рис. 4.2. Зависимость напряжений от времени при частичных разрядах

         Под действием частичных разрядов происходит постепенное разрушение микрообъемов изоляции, размеры газового включения растут в направлении электрического поля, и этот процесс завершается пробоем изоляции.

         Эффективным средством борьбы с частичными разрядами является пропитка изоляции. Замена воздуха жидким диэлектриком с диэлектрической проницаемостью ε r>1 увеличивает емкость Cв , снижая напряжение на воздушном включении; кроме того, электрическая прочность жидкого диэлектрика существенно больше электрической прочности газа.

         Тепловое старение внутренней изоляции возникает за счет ускорения различных химических реакций при рабочих температурах изоляции, обычно лежащих в пределах от 60оС до 130оС. Химические реакции приводят к постепенному изменению структуры и свойств материалов и к ухудшению изоляции в целом.

Для твердой изоляции наиболее характерным является постепенное снижение механической прочности в процессе теплового старения, что приводит к повреждению изоляции под действием механических нагрузок и затем к ее пробою. В жидких диэлектриках продукты разложения загрязняют изоляцию и снижают ее электрическую прочность.

Для органической изоляции повышение температуры на 10оС снижает срок службы изоляции вдвое; в сложной изоляции силовых трансформаторов процесс теплового старения протекает быстрее, чем по десятиградусному правилу.

Старение изоляции возникает и при механических нагрузках на твердую изоляцию. Сущность этого вида старения заключается в том, что в напряженном материале возникает упорядоченное движение локальных микродефектов, и за счет этого образуются и постепенно увеличиваются в размерах микротрещины. При действии сильных электрических полей в микротрещинах возникают частичные разряды, ускоряющие разрушение изоляции.

Увлажнение изоляции может рассматриваться как одна из форм старения изоляции. Влага проникает в изоляцию главным образом из окружающего воздуха. При этом происходит уменьшение сопротивления изоляции, рост диэлектрических потерь, связанный с дополнительным нагревом изоляции и ускоряющий тепловое старение изоляции.

Неравномерное увлажнение, кроме того, приводит к искажению электрического поля и снижает пробивное напряжение изоляции.

Увлажнение - процесс в принципе обратимый, влага может быть удалена из изоляции сушкой. Однако сушка крупногабаритных конструкций требует вывода оборудования из строя на длительное время, а в ряде случаев извлечение влаги из изоляции затруднено или невозможно, например, практически не поддается сушке бумажно-масляная изоляция кабелей, вводов и другого оборудования.

Для снижения увлажнения применяют герметизацию конструкций, воздухоосушители, гибкие диафрагмы и другие методы.

4.2. Основные виды профилактических испытаний изоляции

Перечисленные выше механизмы старения изоляции не исчерпывают все воздействующие на изоляцию факторы.

Дополнительно на изоляцию воздействуют загрязнения, внешний перегрев, перенапряжения, короткие замыкания. Влияние этих факторов на характеристики изоляции представлено в табл. 4.1.

Таблица 4.1 Изменение характеристик изоляции в зависимости от воздействующих факторов

Фактор

Изменение

Увлажнение

Уменьшение сопротивления Увеличение емкости Увеличение tg δ Повышение температуры Повышение давления во вводах Снижение пробивного напряжения трансформ. масла Изменение химического состава Частичные разряды

Загрязнение

Уменьшение сопротивления Увеличение tg δ Повышение температуры Снижение пробивного напряжения трансформ. масла Изменение химического состава Частичные разряды

Перенапряжения

Пробой изоляции Частичные разряды

Перегрев

Уменьшение сопротивления Увеличение tg δ Повышение давления во вводах Изменение химического состава Частичные разряды

Короткие замыкания

Внешние воздействия на изоляцию

         Дефекты в изоляции подразделяются на сосредоточенные (трещины и микротрещины, газовые включения, эрозия, увлажнение небольшого объема) и распределенные, охватывающие значительные объемы или поверхности изоляции.

Возможности обнаружения разных видов дефектов значительно различаются, однако классификация методов диагностики и испытаний изоляции производится по признаку возможного разрушения изоляции в процессе контроля.

По этому признаку все методы контроля изоляции подразделяются на три группы: -неразрушающие методы контроля, производимые при напряжениях , меньших рабочих, и основанные на явлениях, возникающих в слабых электрических полях (электропроводность и поляризационные явления) и связанных с пробивным напряжением изоляции;

- неразрушающие методы контроля, производимые при рабочих напряжениях , - в основном это контроль частичных разрядов, а также тепловой и ультразвуковой контроль;

- разрушающие методы контроля , связанные с использованием напряжения, повышенного по сравнению с рабочим напряжением и вызывающего ускоренное разрушение изоляции в дефектном месте; приложение повышенного напряжения не исключает появления дефекта, который может привести к пробою изоляции во время эксплуатации.

Кроме того, методы контроля подразделяют на две группы по электрическому признаку:

- электрические методы контроля изоляции, которые рассмотрены далее;

- неэлектрические методы контроля: хроматографический анализ газов в трансформаторном масле, ультразвуковые методы контроля, радиоволновой метод, тепловизионный метод, оптикоэлектронный метод, рентгенографический метод.

РЕЗЮМЕ

         В процессе эксплуатации изоляции на нее воздействуют частичные разряды, тепловые и механические нагрузки, из окружающего воздуха проникает влага. Все это приводит к появлению сосредоточенных и распределенных дефектов изоляции.

Методы контроля состояния изоляции подразделяются на неразрушающие методы, производимые при пониженных напряжениях и при рабочих напряжениях, и на разрушающие методы контроля, предполагающие использование напряжений, повышенных по сравнению с рабочими.