Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШПОРЫ ПО ФИЗИКЕ.docx
Скачиваний:
33
Добавлен:
15.04.2019
Размер:
243.49 Кб
Скачать

58. Электрический Ток в Газах

В газах существуют несамостоятельные и самостояг тельные электрические разряды.

Явление протекания электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия на газ, называется несамостоятельным электрическим разрядом. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома, называется энергией ионизации. Частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов одинаковы, называется плазмой.

Носителями электрического тока при несамостоятельном разряде являются положительные ионы и отрицательные электроны. Вольт-амперная характеристика представлена на рис.

59. Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения[1], магнитная составляющая электромагнитного поля[2]Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля)[3][4]. С математической точки зрения - векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Еще одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.

Магнитное поле можно назвать особым видом материи[7], посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей.

Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности, свет и все другие электромагнитные волны.

60. Закон Био́—Савара—Лапла́са — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Был установлен экспериментально в 1820 году Био и Саваром и сформулирован в общем виде Лапласом. Лаплас показал также, что с помощью этого закона можно вычислить магнитное поле движущегося точечного заряда (считая движение одной заряженной частицы током).

Закон Био—Савара—Лапласа играет в магнитостатике ту же роль, что и закон Кулона в электростатике, и глубоко аналогичен ему. Закон Био—Савара—Лапласа можно считать главным законом магнитостатики, получая из него остальные ее результаты (так же, как закон Кулона для электростатики, получая остальные ее результаты получить исходя из него).

В современной формулировке закон Био—Савара—Лапласа чаще рассматривают как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля, т.е. в современной формулировке уравнения Максвелла выступают как более фундаментальные (прежде всего хотя бы потому, что формулу Био—Савара—Лапласа нельзя просто обобщить на общий случай полей, зависящих от времени).

61магнитное поле вокруг проводника с током.Закон Ампера

Закон Ампера устанавливает, что на проводник с током, помещенный в однородное магнитное поле, индукция которого В, действует сила, пропорциональная силе тока и индукции магнитного поля:F = BIlsina (a - угол между направлением тока и индукцией магнитного поля ). Эта формула закона Ампера оказывается справедливой для прямолинейного проводника и однородного поля.Если проводник имеет произвольную формулу и поле неоднородно, то Закон Ампера принимает вид: dF = I*B*dlsinaЗакон Ампера в векторной форме:dF = I [dl B] Сила Ампера направлена перпендикулярно плоскости, в которой лежат векторы dl и B.Для определения направления силы, действующей на проводник с током, помещенный в магнитное поле, применяется правило левой руки

ДЕЙСТВИЕ МАГНИТНОГО ПОЛЯ НА ПРОВОДНИК С ТОКОМ Магнитное поле действует с некоторой силой на любой проводник с током, находящийся в нем.Если проводник, по которому протекает электрический ток подвесить в магнитном поле, например, между полюсами магнита, то магнитное поле будет действовать на проводник с некоторой силой и отклонять его.Направление движения проводника

зависит от направления тока в проводнике и от расположения полюсов магнита.Действие силы на рамку с током.Если поместить проволочную рамку , по которой протекает электрический ток, в магнитное поле, то в результате действия силы магнитного поля, рамка будет поворачиваться. ЭЛЕКТРОДВИГАТЕЛЬ ПОСТОЯННОГО ТОКАУстройство электродвигателя:1) якорь электродвигателя - железный цилиндр, закрепленный на валу двигателя;вдоль цилиндра сделаны прорези (пазы ), в которые укладывается обмотка, состоящая из большого числа витков проволоки.

2) индуктор электродвигателя - электромагнит; образующий магнитное поле, в котором вращается якорь двигателя.

Принцип работы электродвигателя основан на вращении катушки с током в магнитном поле: магнитное поле создается электромагнитом;

катушка - обмотка якоря, по которой протекает электрический ток; со стороны магнитного поля на катушку, как на рамку с током действует сила, стремящаяся повернуть ее; вместе с якорем вращается и вал двигателя. Преимущества электродвигателей :малые размеры по сравнению с тепловыми двигателями;экологически чистые;можно сделать любых размеров;высокий КПД (98 ).

62. Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца, которая всегда направлена перпендикулярно к векторам v и B[3]. Она пропорциональна заряду частицы q, составляющей скорости v, перпендикулярной направлению вектора магнитного поля B, и величине индукции магнитного поля B. В системе единиц СИ сила Лоренца выражается так:

64. Опыты Фарадея, произведенные ещё в первую половину тридцатых годов XIX века, должны были повлечь за собой коренное изменение в основных положениях учения об электрических явлениях. Эти опыты указали, что то, что считалось совершенно пассивно относящимся к электричеству, а именно, изолирующие вещества или, как их назвал Фарадей, диэлектрики, имеет определяющее значение во всех электрических процессах и, в частности, в самой электризации проводников. Эти опыты обнаружили, что вещество изолирующего слоя между двумя поверхностями конденсатора играет важную роль в величине электроёмкости этого конденсатора. Замена воздуха, как изолирующего слоя между поверхностями конденсатора, каким-либо другим жидким или твёрдым изолятором производит на величину электроемкости конденсатора такое же действие, какое оказывает соответствующее уменьшение расстояния между этими поверхностями при сохранении воздуха в качестве изолятора. При замене слоя воздуха слоем другого жидкого или твёрдого диэлектрика электроемкость конденсатора увеличивается в K раз. Эта величина K названа Фарадеем индуктивной способностью данного диэлектрика. Сегодня величину K называют обыкновенно диэлектрической проницаемостью этого изолирующего вещества.

66. Правило Ленца, правило для определения направления индукционного тока: Индукционный ток, возникающий при относительном движении проводящего контура и источника магнитного поля, всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшего этот ток. Сформулировано в 1833 г. Э. Х. Ленцем.

Если ток увеличивается, то и магнитный поток увеличивается.

Если индукционный ток направлен против основного тока.

Если индукционный ток направлен в том же направлении, что и основной ток.

Индукционный ток всегда направлен так, чтобы уменьшить действие причины его вызывающей.

В обобщенной формулировке правило Ленца гласит, что индукционный ток всегда направлен так, чтобы противодействовать вызвавшей его первопричине.

67. Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Самоиндукция — возникновение ЭДС индукции в замкнутом проводящем контуре[1] при изменении тока, протекающего по контуру.

При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока I:

68. Переменный ток — это ток, направление и величина которого меняется во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.

Время, за которое происходит один такой цикл (время, включающее изменение тока в обе стороны), называется периодом переменного тока. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц соответствует одному периоду в секунду.

Переменный ток высокой частоты вытесняется на поверхность проводника, этот эффект называется скин-эффектом.

69. Трансформа́тор — электрический аппарат, имеющий две или более индуктивно связанные обмотки и предназначенный для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока без изменения частоты систем(системы) переменного тока

Трансформатор осуществляет преобразование напряжения переменного тока и/или гальваническую развязку в самых различных областях применения - электроэнергетике, электронике и радиотехнике.

Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.

Виды трансформаторов: Силовой трансформатор, Автотрансформатор, Трансформатор тока, Трансформатор напряжения, Разделительный трансформатор.

70. магнети́зм — форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии посредством магнитного поля. Наряду с электричеством, магнетизм — одно из проявлений электромагнитного взаимодействия. С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля).

71.Магнетики,диамагнетики,парамагнетики

— материалы, вступающие во взаимодействие с магнитным полем, выражающееся в его изменении, а также в других физических явлениях — изменение физических размеров, температуры, проводимости, возникновению электрического потенциала и т. д. В этом смысле к магнетикам относятся практически все вещества (поскольку ни у какого из них магнитная восприимчивость не равна нулю точно), большинство из них относится к классам диамагнетиков (имеющие небольшую отрицательную магнитную восприимчивость — и несколько ослабляющие магнитное поле) или парамагнетиков (имеющие небольшую положительную магнитную восприимчивость — и несколько усиливающие магнитное поле); более редко встречаются ферромагнетики (имеющие большую положительную магнитную восприимчивость — и намного усиливающие магнитное поле), о еще более редких классах веществ по отношению к действию на них магнитного поля — см. ниже.К магнитным материалам с точки зрения техники относят вещества, обладающие определенными магнитными свойствами и используемые в современной технологии. Магнитными материалами могут быть различные сплавы, химические соединения, жидкости.В основном магнитные материалы относятся к группе ферромагнетиков и делятся на две большие группы — Магнитотвёрдые материалы и Магнитомягкие материалы. В то же время в связи с успехом в науках изучающих магнетизм и с развитием большой исследовательской работы в области изучения магнитных материалов, появились новые большие группы магнитных материалов: магнитострикционные материалы, магнитооптические материалы, термомагнитные материалы. Диамагне́тики — вещества, намагничивающиеся против направления внешнего магнитного поля. В отсутствие внешнего магнитного поля диамагнетики немагнитны. Под действием внешнего магнитного поля каждый атом диамагнетика приобретает магнитный момент I (а каждый моль вещества — суммарный магнитный момент), пропорциональный магнитной индукции H и направленный навстречу полю. Поэтому магнитная восприимчивость χ = I/H у диамагнетиков всегда отрицательна. По абсолютной величине диамагнитная восприимчивость χ мала и слабо зависит как от напряжённости магнитного поля, так и от температуры. Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля. Парамагнетики относятся к слабомагнитным веществам, магнитная проницаемость незначительно отличается от единицы .Термин «Парамагнетизм» ввёл в 1845 году Майкл Фарадей, который разделил все вещества (кроме ферромагнитных) на диа- и парамагнитные.Атомы (молекулы или ионы) парамагнетика обладают собственными магнитными моментами, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. В отсутствие внешнего магнитного поля парамагнетик не намагничен, так как из-за теплового движения собственные магнитные моменты атомов ориентированы совершенно беспорядочно.К парамагнетикам относятся алюминий (Al), платина (Pt), многие другие металлы (щелочные и щелочно-земельные металлы, а также сплавы этих металлов), кислород (О2), оксид азота (NO), оксид марганца (MnO), хлорное железо (FeCl2) и др.Парамагнетиками становятся ферро- и антиферромагнитные вещества при температурах, превышающих, соответственно, температуру Кюри или Нееля (температуру фазового перехода в парамагнитное состояние).

72 Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля. Последние исследования в области физики показали, что некоторые ферромагнетики, при создании определенных условий, могут приобретать парамагнетические свойства при температурах, которые существенно выше точки Кюри. Поэтому ферромагнетики, наряду со многими другими магнетическими веществами, остаются, как оказалось, плохо изученными веществами до сих порю Свойства ферромагнетиков: Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы. При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий. Для ферромагнетиков характерно явление гистерезиса

73. Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями.Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими. Внешний источник периодического воздействия обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь.Особый интерес представляет случай, когда внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω, включен в электрическую цепь, способную совершать собственные свободные колебания на некоторой частоте ω0.Если частота ω0 свободных колебаний определяется параметрами электрической цепи, то установившиеся вынужденные колебания всегда происходят на частоте ω внешнего источника.Для установления вынужденных стационарных колебаний после включения в цепь внешнего источника необходимо некоторое время Δt. Это время по порядку величины равно времени τ затухания свободных колебаний в цепи.Электрические цепи, в которых происходят установившиеся вынужденные колебания под действием периодического источника тока, называются цепями переменного тока.

74. Переменный ток, являющийся синусоидальной функцией времени вида:

i = Im sin (ωt + φ),

где i — мгновенное значение тока,

Im — его амплитуда,

ω — угловая частота,

φ — начальная фаза.

Так как синусоидальная функция имеет себе подобную производную, то во всех частях линейной цепи синусоидального напряжения, токи и индуцируемые ЭДС также являются синусоидальными. Целесообразность применения синусоидального тока в технике связана с упрощением электрических устройств и цепей (как и их расчётов

2011-2012 учебный год

  1. Физика, как наука о формах движения.

  2. Механика. Общее представление. Пространство и время. Системы отсчёта.

  3. Движение. Относительное движение. Путь и перемещение.

  4. Скорость. Средняя и мгновенная скорость. Ускорение (среднее и мгновенное).

  5. Криволинейное движение. Движение материальной точки по окружности.

  6. Динамика. Основные параметры динамики.

  7. Законы Ньютона. Понятие силы.

  8. Виды сил.

  9. Импульс. Закон сохранения импульса.

  10. Работа силы. Мощность.

  11. Инерциальные и неинерциальные системы отсчёта.

  12. Работа. Работа переменной силы. Мощность.

  13. Понятие энергии.

  14. Кинетическая и потенциальная энергии.

  15. Закон сохранения и превращения энергии.

  16. Коэффициент полезного действия.

  17. Кинематика вращения твёрдого тела. Параметры вращения.

  18. Динамика вращения твёрдого тела. Момент вращения и момент инерции.

  19. Теорема о переносе осей вращения.

  20. Деформация твёрдого тела.

  21. Механика жидкостей. Уравнение неразрывности струи (Бернулли).

  22. Вращательные движения твёрдого тела.

  23. Механические колебания.

  24. Гармоническое колебательное движение и его уравнение.

  25. Колебания физического и математического маятников.

  26. Гармоническое колебание и его характеристики.

  27. Сложение гармонических колебаний.

  28. Динамика колебаний в волнах. Образование волн.

  29. Принцип относительности. Инерциальная система отсчёта.

  30. Скорость света.

  31. Опытные законы идеального газа.

  32. Уравнение Клайперона-Менделеева.

  33. Основное уравнение молекулярно-кинетической теории газов.

  34. Равновесные и неравновесные теории для идеальных газов.

  35. Скорость движения молекул. Распределение по скоростям.

  36. Степени свободы молекул.

  37. Первое начало термодинамики.

  38. Внутренняя энергия и теплоёмкость.

  39. Адиабатический процесс.

  40. Второе начало термодинамики. Энтропия.

  41. Среднее число столкновений молекул и средняя длина их пробега.

  42. Явление переноса и диффузии.

  43. Теплопроводность.

  44. Потенциал. Работа электрического поля при перемещении зарядов.

  45. Проводники в электрическом поле.

  46. Понятие ёмкости. Конденсаторы.

  47. Диэлектрики в электрическом поле.

  48. Поляризация диэлектриков.

  49. Взаимодействие электрических зарядов. Закон сохранения зарядов.

  50. Электростатическое поле. Закон Кулона.

  51. Напряженность электростатического поля.

  52. Теорема Остроградского-Гаусса.

  53. Потенциальный характер электростатического поля. Эквипотенциальные поверхности.

  54. Эмиссия электронов.

  55. Электрические лампы.

  56. Ток в полупроводниках.

  57. Полупроводниковое устройство.

  58. Ток в газах.

  59. Магнитное поле и его характеристики.

  60. Закон Бло-Саварра-Лапласса.

  61. Закон Ампера.

  62. Действие магнитного поля.

  63. Работа по перемещению проводника в электрическом поле.

  64. Опыты Фарадея.

  65. Закон Фарадея-Максвелла.

  66. Закон индукции Ленца.

  67. Индукция и самоиндукция.

  68. Переменный электрический ток и его законы.

  69. Трансформаторы.

  70. Природа магнетизма.

  71. Диамагнетики, парамагнетики.

  72. Ферромагнетики.

  73. Вынужденные электрические колебания в контуре.

  74. Синусоидальный переменный ток.

  75. Законы Ома для цепей с активным сопротивлением.