Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Answers.docx
Скачиваний:
23
Добавлен:
16.04.2019
Размер:
547.9 Кб
Скачать
  • Найти собственные векторы матрицы:

    • для каждого  j решить уравнение

    (A- jE)x=0;       (1.5)

    • найденный вектор х и будет собственным вектором, отвечающим собственному значению  j.

    26. Общая постановка задачи линейного программирования (злп). Примеры злп

    Линейное программирование – направление математики, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием оптимальности.

    К математическим задачам линейного программирования относят исследования конкретных производственно-хозяйственных ситуаций, которые в том или ином виде интерпретируются как задачи об оптимальном использовании ограниченных ресурсов.

    Круг задач, решаемых при помощи методов линейного программирования достаточно широк. Это, например:

     задача об оптимальном использовании ресурсов при производственном планировании;

     задача о смесях (планирование состава продукции);

     задача о нахождении оптимальной комбинации различных видов продукции для хранения на складах (управление товарно-материальными запасами или "задача о рюкзаке");

     транспортные задачи (анализ размещения предприятия, перемещение грузов).

    Линейное программирование – наиболее разработанный и широко применяемый раздел математического программирования (кроме того, сюда относят: целочисленное, динамическое, нелинейное, параметрическое программирование). Это объясняется следующим:

     математические модели большого числа экономических задач линейны относительно искомых переменных;

     данный тип задач в настоящее время наиболее изучен. Для него разработаны специальные методы, с помощью которых эти задачи решаются, и соответствующие программы для ЭВМ;

     многие задачи линейного программирования, будучи решенными, нашли широкое применение;

     некоторые задачи, которые в первоначальной формулировке не являются линейными, после ряда дополнительных ограничений и допущений могут стать линейными или могут быть приведены к такой форме, что их можно решать методами линейного программирования.

    Составление математических моделей

    Экономико-математическая модель любой задачи линейного программирования включает: целевую функцию, оптимальное значение которой (максимум или минимум) требуется отыскать; ограничения в виде системы линейных уравнений или неравенств; требование неотрицательности переменных.

    В общем виде модель записывается следующим образом:

     целевая функция:

    = c1x1 + c2x2 + ... + cnxn → max(min);

    (2.1)

     ограничения:

    a11x1 + a12x2 + ... + a1nxn {≤ = ≥} b1, a21x1 + a22x2 + ... + a2nxn {≤ = ≥} b2,

    ...            

    am1x1 + am2x2 + ... + amnxn {≤ = ≥} bm;

    (2.2)

     требование неотрицательности:

    xj ≥ 0,  

    (2.3)

    При этом aij, bi, cj (   ) - заданные постоянные величины.

    Задача состоит в нахождении оптимального значения функции (2.1) при соблюдении ограничений (2.2) и (2.3).

    Систему ограничений (2.2) называют функциональными ограничениями задачи, а ограничения (2.3) - прямыми.

    Вектор , удовлетворяющий ограничениям (2.2) и (2.3), называется допустимым решением (планом) задачи линейного программирования. План , при котором функция (2.1) достигает своего максимального (минимального) значения, называется оптимальным.

    Примеры задач линейного программирования

    1. Задача об оптимальном использовании ресурсов при производственном планировании.

    Общий смысл задач этого класса сводится к следующему.

    Предприятие выпускает n различных изделий. Для их производства требуется m различных видов ресурсов (сырья, материалов, рабочего времени и т.п.). Ресурсы ограничены, их запасы в планируемый период составляют, соответственно, b1, b2,..., bm условных единиц.

    Известны также технологические коэффициенты aij, которые показывают, сколько единиц i-го ресурса требуется для производства единицы изделия j-го вида (   ).

    Прибыль, получаемая предприятием при реализации изделия j-го вида, равна cj.

    В планируемом периоде значения величин aij, bi и cj остаются постоянными.

    Требуется составить такой план выпуска продукции, при реализации которого прибыль преприятия была бы наибольшей.

    2. Задача о смесях (планирование состава продукции).

    К группе задач о смесях относят задачи по отысканию наиболее дешевого набора из определенных исходных материалов, обеспечивающих получение смеси с заданными свойствами. Иными словами, получаемые смеси должны иметь в своем составе m различных компонентов в определенных количествах, а сами компоненты являются составными частями n исходных материалов.

    3. Транспортная задача. Под транспортной задачей понимают целый ряд задач, имеющих определенную специфическую структуру. Наиболее простыми транспортными задачами являются задачи о перевозках некоторого продукта из пунктов отправления в пункты назначения при минимальных затратах на перевозку.

    Обычно начальные условия транспортной задачи записывают в так называемую транспортную таблицу. В ячейках таблицы в левом верхнем углу записывают показатели затрат (расходы по доставке единицы продукта между соответствующими пунктами), под диагональю каждой ячейки размещается величина поставки xij (т.е. xij - количество единиц груза, которое будет перевезено от i-го поставщика j-му потребителю).

    27. Основная задача лп (озлп).

    Любую задачу линейного программирования можно свести к стандартной форме, так называемой «основной задаче линейного программирования» (ОЗЛП), которая формируется так: найти неотрицательные значения переменные x1, x2, …, xn, которые удовлетворяли бы условиям – равенствам:

    a11 x1 + a12 x2 + … +a1n xn = b1,

    a21 x1 + a22 x2 + … +a2n xn = b2, (6.1.)

    ………………………………..

    am1 x1 +am2 x2 + … +amn xn = bm.

    и обращали бы в максимум линейную функцию этих переменных:

    (6.2.)

    Случай, когда L надо обратить не в максимум, а в минимум, легко сводится к простому: изменить знак L на обратный (максимизировать не L, а L`=-L). Кроме того, от любых условий – неравенств можно перейти к условиям – равенствам ценой введения некоторых новых «дополнительных» переменных. Пусть требуется найти неотрицательные значения переменных x1,x2,x3, удовлетворяющие ограничениям – неравенствам

    (6.3.)

    и обращающие в максимум линейную функцию от этих переменных:

    (6.4.)

    Начнём с того, что приведём условия (6.3.) к стандартной форме, так, чтобы знак неравенства был , а справа стоял нуль. Получим:

    (6.5.)

    А теперь обозначим левые части неравенств (6.5.) соответственно через y1 и y2:

    (6.6.)

    Из условий (6.5.) и (6.6.) видно, что новые переменные y1, y2 также должны быть неотрицательными. Какая же теперь перед нами стоит задача? Найти неотрицательные значения переменных x1,x2,x3,y1,y2 такие, чтобы они удовлетворяли условиям – равенствам (6.6.) и обращали в максимум линейную функцию этих переменных (то, что в L не входит дополнительные переменные y1, y2, неважно: можно считать, что они входят, но с нулевыми коэффициентами). Перед нами – основная задача линейного программирования (ОЗЛП). Переход к ней от первоначальной задачи с ограничениями – неравенствами (6.3.) «куплен» ценой увеличения числа переменных на два (число неравенств).

    Симметричные (стандартные) задачи линейного программирования.

    Общей задачей линейного программирования называется задача, которая состоит в определении максимального (минимального) значения функции

    (8)

    при условиях

    (9)

    (10)

    (11)

    где - заданные постоянные величины и .

    Функция (8) называется целевой функцией (или линейной формой) задачи (8) – (11), а условия (9) – (11) – ограничениями данной задачи. Стандартной (или симметричной} задачей линейного программирования называется задача, которая состоит в определении максимального значения функции (8) при выполнении условий (9) и (11), где k = m и l = n.

    28. Графический метод решения задач линейного программирования (алгоритм)

    1. В ограничениях задачи (1.2) заменить знаки неравенств знаками точных равенств и построить соответствующие прямые.

    2. Найти и заштриховать полуплоскости, разрешенные каждым из ограничений-неравенств задачи (1.2). Для этого нужно подставить в конкретное неравенство координаты какой-либо точки [например, (0;0)], и проверить истинность полученного неравенства.

    Если  неравенство истинное,

    то    надо заштриховать полуплоскость, содержащую данную точку;

    иначе (неравенство ложное) надо заштриховать полуплоскость, не содержащую данную точку.

    Поскольку и должны быть неотрицательными, то их допустимые значения всегда будут находиться выше оси и правее оси , т.е. в I-м квадранте.

    Ограничения-равенства разрешают только те точки, которые лежат на соответствующей прямой. Поэтому необходимо выделить на графике такие прямые.

    1. Определить ОДР как часть плоскости, принадлежащую одновременно всем разрешенным областям, и выделить ее. При отсутствии ОДР задача не имеет решений.

    2. Если ОДР – не пустое множество, то нужно построить целевую прямую, т.е. любую из линий уровня (где L – произвольное число, например, кратное и , т.е. удобное для проведения расчетов). Способ построения аналогичен построению прямых ограничений.

    3. Построить вектор , который начинается в точке (0;0) и заканчивается в точке . Если целевая прямая и вектор построены верно, то они будут перпендикулярны.

    4. При поиске максимума ЦФ необходимо передвигать целевую прямую в направлении вектора , при поиске минимума ЦФ – против направления вектора . Последняя по ходу движения вершина ОДР будет точкой максимума или минимума ЦФ. Если такой точки (точек) не существует, то можно сделать вывод о неограниченности ЦФ на множестве планов сверху (при поиске максимума) или снизу (при поиске минимум).

    5. Определить координаты точки max (min) ЦФ и вычислить значение ЦФ . Для вычисления координат оптимальной точки необходимо решить систему уравнений прямых, на пересечении которых находится .

    29. Опорные решения

    Каноническая задача линейного программирования в векторной форме имеет вид:

    Положительным координатам допустимых решений ставятся в соответствие векторы условий. Эти системы векторов зависимы, так как число входящих в них векторов больше размерности векторов.

    Базисным решением системы называется частное решение, в котором неосновные переменные имеют нулевые значения. Любая система уравнений имеет конечное число базисных решений, равное , где – число неизвестных, – ранг системы векторов условий. Базисные решения, координаты которых удовлетворяют условию неотрицательности, являются опорными.

    Опорным решением задачи линейного программирования называется такое допустимое решение , для которого векторы условий, соответствующие положительным координатам , линейно независимы.

    Число отличных от нуля координат опорного решения не может превосходить ранга системы векторов условий (т.е. числа линейно независимых уравнений системы ограничений).

    Если число отличных от нуля координат опорного решения равно , то такое решение называется невырожденным, в противном случае, если число отличных от нуля координат опорного решения меньше , такое решение называется вырожденным.

    Базисом опорного решения называется базис системы векторов условий задачи, в состав которой входят векторы, соответствующие отличным от нуля координатам опорного решения.

    Теорема. Любое опорное решение является угловой точкой области допустимых решений.

    Теорема. Любая угловая точка области допустимых решений является опорным решением.

    Основное свойство задачи линейного программирования.

    1. Допустимое множество решений задачи ЛП либо пусто, либо является выпуклым многогранником в Rn (как пересечение полупространств, описываемых ограничениями-неравенствами). Оно может быть как ограниченным, так и неограниченным; в любом случае это замкнутый многогранник.

    2. Если допустимое множество не пусто, а целевая функция ограничена сверху (для задачи максимизации, а для задачи минимизации - ограничена снизу) на этом множестве, то задача ЛП имеет оптимальное решение.

    3. Оптимальные решения задачи ЛП (если они существуют) всегда находятся на границе допустимого множества. Точнее, если существует единственное оптимальное решение, то им является какая-либо вершина многогранника допустимых решений; если две или несколько вершин являются оптимальными решениями, то любая их выпуклая комбинация также является оптимальным решением (т.е. существует бесконечно много точек максимума или минимума).

    Метод полного перебора.

    Полный перебор (или метод «грубой силы», англ. brute force) — метод решения задачи путем перебора всех возможных вариантов. Сложность полного перебора зависит от количества всех возможных решений задачи. Если пространство решений очень велико, то полный перебор может не дать результатов в течение нескольких лет или даже столетий.

    Любая задача из класса NP может быть решена полным перебором. При этом, даже если вычисление целевой функции от каждого конкретного возможного решения задачи может быть осуществлена за полиномиальное время, в зависимости от количества всех возможных решений полный перебор может потребовать экспоненциального времени работы.

    В криптографии на вычислительной сложности полного перебора основывается оценка криптостойкости шифров. В частности, шифр считается криптостойким, если не существует метода «взлома» существенно более быстрого чем полный перебор всех ключей. Криптографические атаки, основанные на методе полного перебора, являются самыми универсальными, но и самыми долгими.

    30. Симплекс-метод решения задач линейного программирования (алгоритм) Алгоритм симплексного метода решения задач линейного программирования

    Для того, чтобы решить задачу симплексным методом необходимо выполнить следующее:

    1. Привести задачу к каноническому виду

    2. Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решение ввиду несовместимости системы ограничений)

    3. Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода

    4. Если выполняется признак единственности оптимального решения, то решение задачи заканчивается

    5. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения.

    31. Транспортная задача.

    Транспортная задача (классическая) — задача об оптимальном плане перевозок однородного продукта из однородных пунктов наличия в однородные пункты потребления на однородных транспортных средствах (предопределённом количестве) со статичными данными и линеарном подходе (это основные условия задачи).

    Для классической транспортной задачи выделяют два типа задач: критерий стоимости (достижение минимума затрат на перевозку) или расстояний и критерий времени (затрачивается минимум времени на перевозку).

    Метод потенциалов решения транспортной задачи. Метод потенциалов является модификацией симплекс-метода решения задачи линейного программирования применительно к транспортной задаче. Он позволяет, отправляясь от некоторого допустимого решения, получить оптимальное решение за конечное число итераций.

    Общая схема отдельной итерации такова.

    По допустимому решению каждому пункту задачи сопоставляется число, называемое его предварительным потенциалом. Пунктам Аi соответствуют числа ui, пунктам Bj - числа vj. Они выбираются таким образом, чтобы их разность на k-й итерации была равна Сij - стоимости перевозки единицы продукции между пунктами Аi и Вj:

    Если разность предварительных потенциалов для каждой пары пунктов Аi, Вj не превосходит Сij, то полученный план перевозок является решением задачи. В противном случае указывается способ получения нового допустимого плана, связанного с меньшими транспортными издержками. За конечное число итераций находится оптимальный план задачи.

    Рассмотрим подробнее процесс определения потенциалов текущего плана транспортной задачи. Потенциал первого пункта потребления принимаем равным нулю

    Теперь, зная его, мы можем определить потенциалы для всех пунктов производства, связанных с первым пунктом ненулевыми перевозками.

    Для свободных клеток транспортной таблицы вычисляются величины

    называемые разностями потенциалов. В таблице они выписаны для всех небазисных клеток под ценами.

    Разность потенциалов можно трактовать как увеличение цены продукта при его перевозке из пункта i в пункт j.

    Процесс «улучшения» плана состоит в определении вводимой и выводимой клеток, в чем прослеживается содержательная аналогия с соответствующими пунктами симплекс-процедур.

    Выводимая клетка определяется с помощью так называемой цепочки преобразования плана, описывающей характер перераспределения грузовых потоков. В соответствии со свойствами транспортной задачи для невырожденного базисного плана в текущей таблице можно образовать замкнутую цепочку, состоящую только их вертикальных и горизонтальных звеньев, одной из вершин которой является выбранная свободная клетка, а остальные — занятые клетки.

    В построенной цепочке, начиная с вводимой клетки (которая считается первой), помечаются вершины: нечетные — знаком «+», а четные знаком «—». Знаком «+» отмечаются те клетки, в которых объемы перевозок должны увеличиться (таковой, в частности, является клетка, вводимая в план, поскольку она должна стать базисной). Знаком «—» — те клетки, в которых перевозки уменьшаются с целью сохранения баланса. Среди множества клеток, помеченных знаком «—», выбирается клетка с наименьшим значением.

    Она и становится кандидатом на вывод, т. к. уменьшение объема перевозок на большую величину может привести к отрицательным значениям xi,j в других «минусовых» клетках. Затем производится пересчет плана по цепочке: к объемам перевозок в клетках, помеченных знаком «+», добавляется объем q, а из объемов клеток, помеченных знаком «—», он вычитается. В результате ввода одной клетки и вывода другой получается новый базисный план, для которого на следующей итерации описанные выше действия повторяются.

    Завершая разговор о методе потенциалов, следует отдельно остановиться на ситуации возникновения вырожденного плана. Возможность получения вырожденного плана уже отмечалась при описании метода северо-западного угла. Нетрудно заметить, что вырожденный план также может получиться на этапе преобразования текущего плана по цепочке: если одинаковое минимальное значение будет достигнуто сразу на нескольких клетках, помеченных знаком «—», то при вычитании перемещаемого по цепочке объема в новом плане будет меньше чем m + n-1 ненулевых компонент.

    Способ преодоления вырожденности в транспортной задаче весьма прост, а именно: предлагается дополнить текущий план необходимым количеством нулевых клеток (фиктивными перевозками) таким образом, чтобы они позволяли рассчитать полную систему потенциалов, и далее действовать в соответствии с правилами описанного выше алгоритма.

    32.Комплексные числа.

    Ко́мпле́ксные чи́сла, — расширение множества вещественных чисел, обычно обозначается . Любое комплексное число может быть представлено как формальная сумма x + iy, где x и y — вещественные числа, i — мнимая единица.

    Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени n с комплексными коэффициентами имеет ровно n комплексных корней (основная теорема алгебры). Это одна из главных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках — электротехнике, гидродинамике, картографии, квантовой механике, теории колебаний и многих других.

    Действия над комплексными числами

    • Сравнение

    a + bi = c + di означает, что a = c и b = d (два комплексных числа равны между собой тогда и только тогда, когда равны их действительные и мнимые части).

    • Сложение

    (a + bi) + (c + di) = (a + c) + (b + d)i.

    • Вычитание

    (a + bi) − (c + di) = (ac) + (bd)i.

    • Умножение

    • Деление

    Алгебраическая форма записи комплексного числа.

    Запись комплексного числа z в виде x + iy, , называется алгебраической формой комплексного числа.

    Сумма и произведение комплексных чисел могут быть вычислены непосредственным суммированием и перемножением таких выражений, как обычно раскрывая скобки и приводя подобные, чтобы представить результат тоже в стандартной форме (при этом надо учесть, что i2 = − 1):(a + ib) + (c + id) = (a + c) + i(b + d);

    33.Изображение комплексных чисел на плоскости.

    Пример   Изобразим на комплексной плоскости числа , , , , :

    Тригонометрическая форма записи комплексного числа.

    Если вещественную x и мнимую y части комплексного числа выразить через модуль r = | z | и аргумент (x = rcos φ, y = rsin φ), то всякое комплексное число z, кроме нуля, можно записать в тригонометрической форме z = r(cos φ + isin φ).Также может быть полезна показательная форма записи комплексных чисел, тесно связанная с тригонометрической через формулу Эйлера:z = reiφ,где eiφ — расширение экспоненты для случая комплексного показателя степени.

    Модуль и аргумент комплексного числа.Модулем (абсолютной величиной) комплексного числа называется длина радиус-вектора соответствующей точки комплексной плоскости (или, что то же, расстояние между точкой комплексной плоскости, соответствующей этому числу, и началом координат).Модуль комплексного числа z обозначается | z | и определяется выражением .

    Умножение комплексных чисел, возведение в степень.

    Эта формула позволяет возводить в целую степень ненулевое комплексное число, представленное в тригонометрической форме. Формула Муавра имеет вид:zn = [r(cos φ + isin φ)]n = rn(cos nφ + isin nφ),где r — модуль, а  — аргумент комплексного числа. В современной символике она опубликована Эйлером в 1722 году. Приведенная формуле справедлива при любом целом n, не обязательно положительном.Умножение Корни из комплексных чисел.Для нахождения корней применяется формула Муавра.Формула Муавра для комплексных чисел утверждает, что Из основной теоремы алгебры следует, что корни n-й степени из комплексного числа всегда существуют, и их количество равно n. На комплексной плоскости, как видно из формулы, все эти корни являются вершинами правильного n-угольника, вписанного в окружность радиуса с центром в нуле.

    , какова его степень.

    34.Формула Эйлера.

    Формула Эйлера утверждает, что для любого вещественного числа x выполнено следующее равенство: ,где e — основание натурального логарифма,i — мнимая единица.Показательная форма комплексного числаПоказательная и тригонометрические формы комплексных чисел связаны между собой формулой Эйлера. Пусть комплексное число z в тригонометрической форме имеет вид z = r(cos φ + isin φ) . На основании формулы Эйлера выражение в скобках можно заменить на показательное выражение. В результате получим:z = reiφЭта запись называется показательной формой комплексного числа. Так же, как и в тригонометрической форме, здесь r = | z | ,φ = argz.

  • Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]