Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTVYeT_K_BILYeTAM_PO_APMT.doc
Скачиваний:
17
Добавлен:
21.04.2019
Размер:
1.18 Mб
Скачать

3. Математическая модель биполярного транзистора. Модель Эберса - Молла

Для анализа работы транзистора в схемах Дж.Д.Эберс и Дж.Л.Молл в 1954 г . предложили простые и удобные модели транзистора, различные варианты которой широко используются на практике. В эти модели входят управляемые источники тока, управляемые токами, учитывающие связь между взаимодействующими p - n -переходами в биполярном транзисторе. Эти модели справедливы для всех режимов работы транзистора.

Простейшим вариантом низкочастотной модели Эберса-Молла является модель с идеальными p - n -переходами и двумя источниками тока. На рис. 3.11 представлена такая модель.

Рис. 3.11

Здесь - коэффициент передачи коллекторного тока в инверсном режиме; - токи, текущие через переходы, они определяются соотношениями:

,

- обратные тепловые токи коллектора и эмиттера соответственно. В некоторых источниках и справочниках используются обозначения для обратных тепловых токов в виде IЭБК и IКБК , причем эти тепловые токи измеряются при короткозамкнутых коллекторе для IЭБК и эмиттере для IКБК . Кроме того, в аналитических соотношениях иногда используются обозначения IЭ0 и IК0 , равные

,

отражающие обратные токи эмиттера и коллектора при обрыве коллектора или эмиттера соответственно.

В соответствии с первым законом Кирхгофа для токов эмиттера и коллектора схемы рис.3.11 имеем

(*)

Другая модель Эберса-Молла для идеального транзистора описывается одним управляемым источником тока. Она получается из первой путем преобразования соотношений (*) и приближения . Тогда вместо (*) получим

(**)

Обозначим , подставим в (**):

,

или

(***)

Система (***) и позволяет построить модель с одним источником тока (рис.3.12).

Рис. 3.12

Здесь .

Эту модель как основу используют некоторые программы моделирования электронных схем, такие как Micro - Cap , Design Center и др.

В программе PSpice часть параметров транзистора вводится, часть задается по умолчанию. Здесь также ток, передаваемый от эмиттера к коллектору выражается через напряжения эмиттер-база и коллектор база и общий заряд в базе. Учитываются эффекты высокого уровня инжекции, уменьшение коэффициента передачи базового тока при малых токах, модуляция ширины базы, объемное сопротивление базы. Динамические (частотные) свойства переходов учитываются включением в модель барьерной и диффузионной емкостей самих переходов и подложки.

Физические малосигнальные модели биполярных транзисторов

Для анализа работы транзистора в усилительных устройствах в активном режиме часто используют физические и формализованные модели транзистора при заданных значениях постоянных напряжений и токов, совокупность которых определяет режим работы транзистора по постоянному току (или так называемую «рабочую точку»), для небольших (малых) изменений переменных токов и напряжений в окрестности этой рабочей точки. Именно для этих малых изменений переменных и строятся малосигнальные модели транзистора. Одной из физических малосигнальных моделей является модель, основой которой является модель Эберса-Молла с двумя источниками тока. На рис. 3.13 показана такая модель, включающая в себя объемные сопротивления полупроводников в областях эмиттера, базы, коллектора rЭ1 , rБ1 , rК1 , а также дифференциальные сопротивления и емкости переходов rЭ , rК , СЭ , СК .

Рис. 3.13

Поскольку наибольшее объемное сопротивление полупроводника имеет база, и эмиттерный переход открыт, то можно использовать более простую Т-образную физическую модель транзистора с ОБ (рис.3.14,а). Для транзистора с ОЭ аналогичная модель представлена на рис. 3.14,б.

Рис. 3.14

Дифференциальное сопротивление эмиттера составляет единицы – десятки Ом, сопротивление объема базы – сотни Ом, сопротивление коллектора в схеме с ОБ – Мегомы. Емкость коллекторного перехода составляет единицы – десятки пикофарад. В схеме с ОЭ в выходной цепи дифференциальное сопротивление и емкость пересчитываются по формулам:

Емкости Ск и СК* влияют на работу транзистора в области высоких частот. Строгая теория дает довольно сложную картину зависимости параметров модели от частоты. На практике используют упрощенные модели, сводящие сложную зависимость лишь к изменению коэффициента передачи тока эмиттера (ОБ) или базы (ОЭ) от частоты:

где - коэффициенты передачи тока на низких частотах, - частоты на которых коэффициент передачи падает в раз. Эти же частоты , выраженные в герцах, называются предельными частотами коэффициентов передачи тока в схемах ОБ и ОЭ соответственно. Частоты связаны зависимостью , т.е. предельная частота транзистора, включенного по схеме с общим эмиттером меньше предельной частоты транзистора, включенного по схеме с общей базой. В зависимости от значения предельной частоты различают транзисторы низкочастотные ( ), среднечастотные ( ), высокочастотные ( ) сверхвысокочастотные .

В справочниках для транзистора, включенного по схеме ОЭ, дается частота fгр (или fт), на которой коэффициент передачи базового тока становится равным 1. Кроме того, иногда приводится так называемая максимальная частота fmax – наибольшая частота, при которой транзистор способен работать в схеме автогенератора при оптимальной обратной связи. Приближенно , где - постоянная времени цепи обратной связи. Максимальная частота определяет устойчивость усилителя на данном транзисторе к самовозбуждению на частотах f < fmax .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]