Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_po_matematike.docx
Скачиваний:
4
Добавлен:
24.04.2019
Размер:
1.08 Mб
Скачать

1. Евклидово пространство. Длина вектора, угол между векторами.

Пусть  -- вещественное -мерное пространство, в котором задан базис . Тогда векторы и из задаются своими координатами: Скалярное произведение векторов задается формулой . В отличие от обычного трехмерного пространства, где с помощью транспортира и линейки можно измерить угол между векторами и длину вектора, в -мерном пространстве ни угол между векторами, ни длину вектора измерить невозможно. Поэтому ортонормированным в -мерном пространстве называется тот базис, в котором скалярное произведение вычисляется по формуле ( 18.3 ). Если ,  - координатные столбцы векторов и , то скалярное произведение можно задать формулой Вещественное линейное пространство, в котором задано скалярное произведение называется евклидовым пространством.

Длина вектора в координатах определяется как расстояние между точками начала и конца вектора. Если заданы две точки в пространстве А(х1, y1, z1), B(x2, y2, z2), то .

Если рассматривать векторы в декартовой прямоугольной системе координат, то скалярное произведение векторов · = xa xb + ya yb + za zb. Используя полученное равенство, получаем формулу для вычисления угла между векторами:

.

2. Второй замечательный предел.

Вторым замечательным пределом называется предел

Теорема. Второй замечательный предел существует. Его значение - число лежащее между и .

Для доказательства теоремы понадобится следующая лемма; формула, в ней полученная, называется формулой бинома Ньютона.

Лемма. Пусть и  -- натуральное число. Тогда имеет место формула Заметим, что в дроби очевидно, сокращаются все сомножители в числителе и знаменателе, так что эта дробь равна 1. Аналогично, в предыдущем (не выписанном) слагаемом после сокращения получается коэффициент, равный , в третьем справа слагаемом -- равный , и т. д. Таким образом, коэффициенты в слагаемых, стоящих на одинаковых местах, считая слева и справа от края формулы, совпадают.

Доказательство. Доказывать утверждение леммы будем по индукции по параметру . При формула, очевидно, верна: (Заметим, что при и формула также хорошо известна: и Предположим, что она верна для , и докажем, что тогда она верна и при . Действительно,

При этом в квадратных скобках получается:             и так далее, то есть как раз то, что должно получиться в качестве коэффициентов формулы бинома Ньютона при .

Доказательство теоремы. Рассмотрим последовательность и применим к формулу бинома Ньютона при и . Получим

Покажем, что последовательность ограничена сверху. Для этого заменим все дроби , , ..., на 1. Все эти дроби меньше 1, так что сумма в правой части формулы (доказательство теоремы) увеличится: Далее, заменим все числа в знаменателях этих слагаемых на 2; от этого правая часть ещё увеличится. Получим: В правой части получилась сумма членов геометрической прогрессии. Она равна Поэтому что и означает ограниченность последовательности сверху числом 3. Покажем теперь, что последовательность не убывает. Действительно, запишем формулу (доказательство теоремы) в виде

В аналогичной формуле, написанной для вместо , во-первых, увеличится каждое из выражений в круглых скобках (так как вычитаемое уменьшится) и, значит, увеличатся все слагаемые, содержащие такие скобки. Во-вторых, число слагаемых увеличится на одно: добавится положительное слагаемое Следовательно, при росте номера члены последовательности строго возрастают: при всех . Применим теперь к возрастающей ограниченной сверху последовательности теорему о пределе монотонной ограниченной функции и получим, что существует предел причём число не больше постоянной 3, ограничивающей последовательность. Осталось заметить, что . Так как все последующие члены ещё больше, то и предел , на основании теоремы о переходе к пределу в неравенстве, не меньше числа , что и завершает доказательство теоремы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]