Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты 1-17+34 (1).docx
Скачиваний:
2
Добавлен:
25.04.2019
Размер:
232.02 Кб
Скачать

1. Биномиальное распределение.

Бином Ньютона

где n – число независ. исходов в 1ом испытании; р – вероят-ть благопр-го исхода 1го случая; q – вероят-ть неблагопр-го исхода; N – общее число испытаний (исходов) N=2n.

Откладывая знач-я числа наступления благоприят. исходов m по оси абсцисс, а знач-я вероятных численностей – по оси ординат, получим многоугольник численностей распред-я. Ломаная линия, соед-щая точки на графике, наз. кривой распред-я. Биномиальные коэф-ты можно получить при помощи треугольника Паскаля. Числовые знач-я коэф-тов построены так, что любой из них получ-ся суммированием 2х стоящих над ним строкой выше знач-й, справа и слева.

Знач-я коэффициентов, начиная с 1, возрастают до опред-го уровня, а затем в той же послед-ти уменьш-ся. Кривые, изображ-ие биномиальные распред-я симметричны. При любой степени бинома п число коэффициентов = n+1.

Д/вычисления вероятностей у события (появиться m раз в n независ-ых испытаний) наряду с ф-лой бинома примен. также ф-лу Якоба Бернулли:

Здесь – число сочетаний из n элементов по m, или биномиальный коэф-нт;

р – вероят-ть ожидаемого события (благоприятного исхода);

q = 1 – р – вероятность противоположного события; m – частота появления ожидаемого события; n –число испытаний; n! и m! –факториалы, т. е.: 123...n и 123...m.

Совокуп-ть вероятностей при m = 1, 2, 3, ...n наз. биномиальным распределением вероятностей.

Биномиальное распред-е опред-ся 2я параметрами: средней величиной μ = np и дисперсией или квадратическим отклонением .

2. Вычисление дисперсий.

Дисперсия и стандартное отклонение (сигма), т! д/выборок:

x2 – сумма квадратов центральных отклонений, т. е. квадратов разностей м/у каждым знач-ем и средней арифметич.;

Xi – значение признака у каждого объекта в гр.; μ – средняя арифметич. признака д/дан. гр.; n–1 – число степеней свободы, равное числу объектов в гр. без 1го.

Стандартное отклонение генеральной совокуп-ти:

, где Xi– значение признака, варианта; – генеральная средняя; N– объем генеральной совокупности

Билет 6

1. Нормальное распределение. Ур-е норм-ой кривой выражает завис-ть теоретич-х численностей f(x) или у от знач-ий x – непрерывно распред-ся случайной величины. f(x) – теоретич-е численности, выраженные в долях 1цы, или плотности вероятности случайного события x; – квадратич-ое отклонение данного норм-го распред-я; π = 3,1426, е = 2,7183, – отклонение случайно распределенной величины X от средней арифметической , явл-ся центром распред-я величины X.

Матем-ое ожидание норм-ой случайной переменной.

Д/вычисления этого интеграла введем нов. переменную:

, . Получим:

Интегрируем по частям: 1вый из интегралов =0, а второй . =>

Параметр μ есть матем-ое ожидание норм-ой случайной переменной, плотность вероятности кот. дается ф-лой 1.

Находим значение Е (X2):

Интегрируем по частям: 1вый из интегралов = σ2, 2ой =0, а 3ий =μ2. Т.о.,

, откуда

Итак, дисперсия норм-ой случайной переменной = σ2, а ее среднее стандартное отклонение – σ.

Ур-е кривой норм-го распред-я в нормированной форме будет:

Оно выраж. завис-ть м/у вероятностью y и нормированным отклонением . Средняя такого распред-я = 0, а квадратическое отклонение = 1. Матем-ки ф-ция площади от нормированного отклонения им. вид:

2. χ2–распределение. Этот критерий применяется д/реш-я задач статистич-го ан-за, Н: д/проверки гипотез: о независ-ти 2ух принципов, положенных в основу группировки рез-татов наблюдений из одной совокупности. Кривая распред-я, полученная из ф-ции хи–квадрат: где f – фактические и F – теоретич-е частоты численности объектов выборки. Ее вид в сильной степени зависит от числа степеней свободы. Д/малого числа степеней свободы (ν) кривая асимметрична но с увелич-ем ν асимметрия уменьш-ся и при ν = ∞ кривая становится нормальной гауссовой. Распред-е χ2, так же как и t–распределение, частный случай F – распред-я при ν1 = ν и ν2 = ∞.