Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
207416_FC3B0_otvety_na_bilety_s_primerami_matan....doc
Скачиваний:
33
Добавлен:
26.04.2019
Размер:
2.84 Mб
Скачать

16. Предел последовательности при и предел функции при . Признаки существования предела (с доказательством теоремы о пределе промежуточной функции). Предел числовой последовательности

Определение. Если по некоторому закону каждому натуральному числу поставлено в соответствие вполне определенное число , то говорят, что задана числовая последовательность :

.

Другими словами, числовая последовательность - это функция натурального аргумента: .

Числа называются членами последовательности, а число - общим или -м членом данной последовательности.

Примеры числовых последовательностей:

1) (монотонная, неограниченная),

2) (не монотонная, ограниченная)

3)

Рассмотрим числовую последовательность , изобразив ее точками на числовой оси (рис.4.1):

Видно, что члены последовательности с ростом как угодно близко приближаются к 0. При этом абсолютная величина разности становится все меньше и меньше.

Определение. Число называется пределом числовой последовательности , если для любого, даже сколь угодно малого положительного числа , найдется такой (зависящий от ), что для всех членов последовательности с номерами верно неравенство:

.

Обозначают: . Или при .

Последовательность, имеющая предел, называется сходящейся, в противном случае – расходящейся.

Предел функции в бесконечности и в точке

Предел функции в бесконечности: С понятием предела числовой последовательности тесно связано понятие предела функции в бесконечности. Если в первом случае переменная возрастая, принимает лишь целые значения, то во втором случае переменная , изменяясь, принимает любые значения.

Определение. Число называется пределом функции при стремящемся к бесконечности, если для любого, даже сколь угодно малого положительного числа , найдется такое положительное число (зависящее от ), что для всех таких что , верно неравенство:

.

Это предел функции обозначается: или при .

Можно сформулировать понятие предела при стремлении к бесконечности определенного знака, т.е. при и при . В первом случае основное неравенство: должно выполнятся для всех таких, что , а во втором – для всех таких, что .

Предел функции в точке: Пусть функция задана в некоторой окрестности точки , кроме, быть может, самой точки .

Определение. Число называется пределом функции при стремящемся к (или в точке ), если для любого, даже сколько угодно малого положительного числа , найдется такое положительное число (зависящее от ), что для всех , не равных и удовлетворяющих условию , выполняется неравенство .

Это предел функции обозначается: или при .

Если при стремлении к переменная принимает лишь значения, меньшие , или наоборот, лишь значения большие , и при этом функция стремится к некоторому числу , то говорят об односторонних пределах функции соответственно слева и справа .

Признаки существования предела

Теорема 1. Если числовая последовательность монотонна и ограничена, то она имеет предел.

Теорема 2. Если в некоторой окрестности точки (или при достаточно больших значениях ) функция заключена между двумя функциями и , имеющими одинаковый предел при (или ), то функция имеет тот же предел .

Пусть при , .

Это означает, что для любого найдется такое число , что для всех и удовлетворяющих условию будут верны одновременно неравенства:

(1.1)

или

Т.к. по условию функция заключена между двумя функциями, т.е.:

, то из неравенств (1.1) следует, что , т.е.:

.

А это и означает, что