Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Збірник лекцій екол. РПЗ.doc
Скачиваний:
8
Добавлен:
28.04.2019
Размер:
786.43 Кб
Скачать

Основні екологічні закони.

1. Закон піраміди енергії – з одного трофічного рівня екологічної піраміди переходить на інші рівні не більше 10% енергії, цей закон дає змогу обчислювати необхідні земельні площі для забезпечення нселення продуктами харчування тощо.

2. Розвиток природної системи за рахунок навколишнього середовища – будь-яка природна система може розвиватися лише за умови використання матеріально-енергетичних та інформаційних можливостей навколишнього середовища; абсолютно ізольований саморозвиток неможливий.

3. Закон екологічної кореляції – в екосистемах, як і в будь-якому цілісному природному утворенні, всі її компоненти функціонально відповідають один одному; випадання однієї частини системи (знищення виду) неминуче призводить до виключення всіх тісно пов’язаних з цією частиною системи інших ї частин і до функціональної зміни цілого в рамках дії закону внутрішньої динамічної рівноваги.

4. Закони Коммонера

  1. Все пов'язано зі всім;

Екологія розглядає біосферу нашої планети як складну систему з багатьма взаємопов'язаними елементами.

Ці зв'язки реалізуються за принципами зворотного негативного зв'язку (згадаємо, наприклад, систему «хижак—жертва»), прямих зв'язків, а також завдяки різноманітним взаємодіям, що взаємовиключають одна одну.

За рахунок цих зв'язків формуються гармонійні системи кругообігу речовин та енергії. Будь-яке втручання в роботу збалансованого механізму біосфери викликає відповідь одразу за багатьма напрямами.

  1. Все повинно кудись діватися;

На прикладі біологічного кругообігу видно, як рештки й продукти життєдіяльності одних організмів є в природі джерелом існування для інших.

Людина поки ще не створила такого гармонійного кругообігу в своїй господарській діяльності. Будь-яке виробництво постійно «випускає» принаймні дві речі — необхідну продукцію й відходи. Відходи самі собою не зникають: вони нагромаджуються, знову втягуються в кругообіг речовин і призводять до непередбачених наслідків.

  1. Ніщо не дається задарма;

Цей закон стверджує: природні ресурси не нескінченні. Людина в процесі своєї діяльності нині бере у природи в «борг» частину її продукції, залишаючи під заставу ті відходи й ті забруднення, яким не може чи не хоче запобігти. Цей борг зростатиме доти, доки існування людства не опиниться під загрозою й люди сповна не усвідомлять необхідність усунення негативних наслідків своєї діяльності. Це усунення потребуватиме дуже великих затрат, які й стануть сплатою цього боргу.

  1. Природа знає краще.

Цей закон екології стверджує, що штучне введення органічних речовин, які не існують у природі, а створені людиною, але беруть участь у живій системі, швидше завдасть шкоди. Одним із найдивовижніших фактів у хімії живих речовин є те, що для будь-якої органічної субстанції, виробленої живими істотами, в природі є фермент, здатний цю субстанцію розкласти. Тому, коли людина синтезує нову органічну сполуку, яка за структурою значно відрізняється від природних речовин, цілком імовірно, що для неї немає розкладального ферменту, й ця речовина «накопичуватиметься». Другий закон допомагає зрозуміти, які наслідки матиме таке накопичення.

5 Гіпотези походження життя на Землі

Найбільше значимі теорії, що пояснюють виникнення життя на Землі:

а) креаціонізм, тобто створення життя у визначений час божественною істотою;

б) мимовільне зародження життя;

Засновник цієї теорії є Арістотель він стверджував, що природа здатна переходити від безжиттєвих об’єктів до тварин послідовно. Хоча у світлі сучасного сприйняття цієї теорії багато чого здається наївним і навіть абсурдним. Так, Арістотель стверджував, що живе може виникнути не тільки шляхом спарювання тварин, але і при розкладанні ґрунту.

У період XVI – XVII століть теорія мимовільного зародження втрачала своїх прихильників. Однак стосовно мікроорганізмів завдяки роботам Левенгука надалі вона підсилила свої позиції. Однак у середині XIX століття Луї Пастер, досліджуючи мікроорганізми на рівні бактерій і грибків, остаточно виніс вирок теорії спонтанного, тобто довільного зародження, довівши, що виникнення живого організму неможливо без особистої участі іншого організму, заклав тим самим джерела нової теорії біогенезу.

в) визнання постійного існування життя;

Серед обговорюваних теорій виникнення життя на Землі теорія стаціонарного стану виділяється не тільки відсутністю тимчасових рамок, але також неясними аспектами еволюції. Так, відповідно до цієї теорії, Земля існувала завжди, тому окремі види тварин ніколи не виникали, вони також завжди існували. Для кожного виду була альтернатива – змінювати чисельність або вимирати.

У цьому плані прихильники теорії приводять цілком реальний приклад, коли сучасна наука ґрунтувалася на даних палеонтології, кісткопері риби вважалися вимерли 70 млн. років тому (кінець крейдового періоду). Тоді як у районі острова Мадагаскар були знайдені живі представники кісткоперих, тобто вид зберігся. Таким чином, знахідки викопних залишків прихильники цієї теорії бачать у труднощах, причинами яких є екологічні фактори збереження чисельності популяції, унаслідок чого вид переміщається в інші місця, більш сприятливі для збереження самого виду або його залишків, але можливість повного зникнення виключається. Прихильники теорії стаціонарного стану стверджують, що тільки вивчаючи нині живі види і порівнюючи їх з викопними останками, можна зробити висновок про можливе повне вимирання, що виявиться малоймовірним, деякою мірою теорія стаціонарного стану перегукується з креаціонізмом, особливо в неприйнятті еволюції, хоча роль творця в ній і не згадується. Однак сталість видів усього живого, котрим не дано змінюватися, робить теорію непридатною при розгляді фактів видової мінливості на відносно великих тимчасових відрізках.

г) панспермія, або привнесення життя ззовні, тобто з Всесвіту;

Обговорюючи наступну теорію виникнення життя на нашій планеті необхідно відразу ж вказати на її особливість, а саме раптовість появи життя як результату привнесення ззовні, тобто з Всесвіту. Таким чином, теорія панспермії тісно переплітається з гуфологією, що вивчає неземну цивілізацію і вивчає відвідування Землі інопланетянами. З цієї причини відповідно до теорії панспермії, якщо життя і не виникло через візити на Землю космічних кораблів багато тисяч років тому, то могло бути занесене з метеоритами й іншими космічними тілами, наприклад, кометами. На підтвердження такого підходу прихильники цієї теорії посилаються на доведенні земною наукою випадки виявлення в метеоритних залишках органічних сполук, похідних синильної кислоти й інших найпростіших попередників живих організмів, що потрапляючи на поверхню планети, незалежно від того, чи грунт це або водне середовище, стали попередниками земного життя.

д) виникнення життя як результат фізико – хімічних процесів.

Радянський академік О.І. Опарін у 1924 році висунув теорію про походження життя. Відповідно до цієї теорії, розвиток живого на Землі відбувався у кілька етапів, виникнення білка передувала тривала еволюція відповідних хімічних речовин з первинних органічних сполук. Зокрема, вуглеводів, аміаку, води й ін. виникли спершу більш складні речовини, амінокислоти, пуринова підстава, а також пірімідінові підстави й ін. З них надалі утворилися більш високомолекулярні речовини, примітивні попередники сучасних білків і нуклеїнових кислот. Ці речовини, спершу розчинені у воді на поверхні Землі, виділялися з розчину очевидно завдяки властивостям високомолекулярних речовин з’єднуючись між собою, утворюючи агрегати у вигляді окремих крапель, названих Опаріним “коацерватами “. Плаваючи в розчині, коацервати видозмінюються, поглинаючи з розчину, а також виділяючи в розчин відповідні речовини. Внаслідок цих тривалих процесів у коацерватів виникли ферменти, а з ними - здатність до само відтворення з речовин навколишнього середовища, тобто в наявності обмін речовин у найпростішій формі.

Ці коацервати і перетворилися в первинні живі організми, з яких шляхом еволюційного розвитку виникли всі організми. Така теорія О.І. Опаріна. Якщо прийняти, що на поверхні Землі був водень, вуглеводні, аміак, водяна пара, необхідні для виникнення живого, то при дії ультрафіолетового й іонізуючого опромінення, електричних розрядів, температурних і інших факторів, можна б було здійснити синтез амінокислот, оксикислот, пуринових основ амінів і інших складових живого. Надалі дослідницьким шляхом були отримані і найпростіші аналоги білків, синтетичні нуклеїнові кислоти й інші високомолекулярні з’єднання. Після цього був здійснений штучний синтез коацерватів і доведено поглинання ними з розчинів різних хімічних сполук. Ці дані були повідомлені ще в 1957 році на міжнародному симпозіумі про шляхи виникнення життя на Землі.

Закріплення знань

  1. Назвіть головні причини розвитку глобальної екологічної кризи.

  2. Наведіть приклади спустелювання, даградації грунтів і зникнення лісів на континентах, укажіть причини цього.

  3. Які екологічні сформулював Б. Коммонер?

  4. В чому полягає зміст гіпотези Опаріна?

  5. Які погляди на походження життя на Землі , крім гіпотези абіогенного походження, вам відомі?

  6. Яким чином відбувався розвиток життя на Землі?

1.2 Структура природного середовища, екологічне значення його складників. Природні ресурси Землі та їх значення в житті людини. Кругообіг речовин та енергії в біосфері. Екологічні катастрофи та їх класифікація

1 Структура природного середовища, екологічне значення його складників

2 Природні ресурси Землі та їх значення в житті людини

3 Кругообіг речовин та енергії в біосфері

4 Екологічні катастрофи та їх класифікація

1 Структура природного середовища, екологічне значення його складників

Під природним середовищем розуміють сукупність зовнішніх умов, які впливають на живі організми та на їх угруповання. Взаємовплив між живими організмами і оточуючим їх середовищем, обмін речовин і енергії між ними, пристосування організмів до мінливих умов існування є невід'ємними умовами життя на Землі. Середовище, яке оточує рослини і тварин, складається з багатьох елементів, однак, не всі вони однаково впливають на живі організми і останні по-різному реагують на різні елементи середовища.

Атмосфера — це газова оболонка, що оточує Землю. Наявність атмосфери — одна з найголовніших умов життя на планеті. Атмосфера виконує кілька основних функцій:

• захищає живі організми від згубного впливу космічних випромінювань та ударів метеоритів;

• регулює сезонні й добові коливання температури (якби на Землі не існувало атмосфери, то добові коливання температури досягали б ± 200 °С);

• є носієм тепла й вологи;

• є депо газів, які беруть участь у фотосинтезі й забезпечують дихання;

• зумовлює низку складних екзогенних процесів (вивітрювання гірських порід, діяльність природних вод, мерзлоти, льодовиків тощо).

Основні компоненти атмосфери: азот (78,084 %), кисень (20,946 %) та аргон (0,934 %). Важливу роль відіграють і так звані малі домішки: вуглекислий газ, метан тощо. Крім того, атмосфера містить водяну пару: від 0,2 % у приполярних районах до 3 % поблизу екватора. Такий хімічний склад атмосфера Землі мала не завжди. Первісна атмосфера Землі була схожа з атмосферами деяких інших планет Сонячної системи, наприклад Венери, й складалася з вуглекислого газу, метану, аміаку тощо. Нинішня киснево-азотна атмосфера — результат життєдіяльності живих організмів.

Маса атмосфери становить приблизно одну мільйонну маси Землі — 5,15 • 1015 т. Та атмосферне повітря лише умовно можна вважати невичерпним природним ресурсом. Річ у тім, що людині необхідне повітря певної якості, а під впливом її ж діяльності хімічний склад і фізичні властивості повітря дедалі погіршуються. На Землі вже практично не залишилося місць, де повітря зберегло свої первозданні чистоту та якість, а в деяких промислових центрах стан атмосфери вже просто загрозливий для людського здоров'я.

Атмосфера складається з таких шарів (знизу вгору): тропосфера (до висоти 18 км), стратосфера (до 50), мезосфера (до 80), термосфера (1000), екзосфера (1900), геокорона (умовно до 20 тис. км); далі атмосфера поступово переходить у міжпланетний космічний вакуум. Основна маса повітря (90 %) зосереджена в нижньому шарі — тропосфері. Тут же відбуваються найінтенсивніші теплові процеси, причому атмосфера нагрівається знизу, від поверхні океанів і суходолу. Надзвичайно важливе екологічне значення для біосфери має озоновий шар у стратосфері, повітря якого збагачене триатомним киснем (О3). Він розташований на висоті 20—50 км і захищає все живе на Землі від згубної дії «жорсткого» ультрафіолетового випромінювання Сонця.

Крім газів, у повітрі атмосфери містяться ще й домішки так званих аерозолів, тобто дуже дрібних крапель рідин і твердих частинок як природного, так і штучного походження: сірчистих (краплі H2SO4), мінеральних (пил із земної поверхні), вуглеводневих (сажа), морських (частинки морських солей) та ін.

Гідросфера, або водяна оболонка Землі, — це її моря й океани, крижані шапки приполярних районів, річки, озера й підземні води. Запаси води на Землі величезні — 1,46- 109 км3 (0,025 % її маси). Але це переважно гірко-солона морська вода, непридатна для пиття й технологічного використання. Прісна вода становить усього 2 % її загальної кількості на планеті, причому 85 % її зосереджено в льодовикових щитах Гренландії та Антарктиди, айсбергах і гірських льодовиках. І лише 1 % прісної води містять річки, озера й підземні води; саме ці джерела й використовує людство для своїх потреб.

Вода виконує дуже важливі екологічні функції:

• вода — це головна складова частина всіх живих організмів (тіло людини, наприклад, на 70 % складається з води, а деякі організми, такі як медуза або огірок, на 98—99 %);

• за участю води здійснюються численні процеси в екосистемах (наприклад, обмін речовин, тепла);

• води Світового океану — основний кліматоутворюючий фактор. головний акумулятор сонячної енергії й «кухня» погоди для всієї планети;

• вода — один із найважливіших видів мінеральної сировини, основний природний ресурс, що споживається людством (сьогодні води використовується в тисячі разів більше, ніж нафти чи вугілля).

Величезну роль відіграє гідросфера у формуванні поверхні Землі, її ландшафтів, у розвитку екзогенних процесів (вивітрювання гірських порід, ерозія, карст тощо), в перенесенні хімічних речовин, у тому числі й забруднювачів довкілля.

Літосфера — це зовнішня тверда оболонка Землі, що охоплює всю земну кору й частину верхньої мантії; вона складається з осадових, вивержених і метаморфічних порід.

Літосфера, як елемент глобальної екосистеми, виконує важливі функції:

• на її поверхні живе більшість рослинних і тваринних організмів, у тому числі й людина;

• верхня тонка оболонка літосфери на материках — це ґрунти, що забезпечують умови життя для рослин і є основним джерелом отримання продуктів харчування для людей;

• літосфера — це й «комора» корисних копалин — енергетичної сировини, руд металів, мінеральних добрив, будівельних матеріалів тощо.

У літосфері періодично відбувалися й відбуваються грізні процеси — виверження вулканів, землетруси, зсуви, селі, обвали, ерозія земної поверхні, які призводять до небезпечних екологічних ситуацій на певних ділянках планети. Іноді ці процеси спричинюють глобальні екологічні катастрофи.

Нижня межа літосфери нечітка й визначається за різким зменшенням в'язкості порід, збільшенням їхньої щільності та іншими геофізичними харатеристиками. Товщина літосфери на континентах і під океанами різна й становить відповідно 25—200 та 5— 100 км. Найглибші шахти, пройдені людиною, сягають 3—4 км, а найглибша в світі свердловина (пройдена на Кольському півострові) — трохи більше за 12 км. Про склад і будову глибших зон літосфери нам відомо лише на основі непрямих методів (сейсмо- та електророзвідка, гравіметрія тощо).

Простір нашої планети, в якому існує й «працює» жива речовина, називають біосферою (від грец. біос — життя та сфера — куля). Перші уявлення про біосферу як «зону життя» дав відомий французький природознавець Ж.-Б. Ламарк, а термін «біосфера» ввів у науку австрійський геолог Е. Зюсс (1875 p.). Проте цілісне вчення про біосферу створив наш видатний співвітчизник, засновник і перший президент Академії наук України В. І. Вернадський.

Біосфера охоплює три геологічні сфери — частини атмосфери й літосфери та всю гідросферу. Межі біосфери визначаються межами поширення й активної роботи живої речовини.

Верхня межа біосфери в атмосфері, на думку одних учених, проходить на висоті вершин Гімалаїв (10 км над рівнем моря), на думку інших, — досягає нижніх шарів стратосфери (30 км), де ще трапляються в досить великій кількості спори й навіть клітини бактерій, грибів і деяких водоростей, що активно вегетують. Іноді верхньою межею біосфери вважають озоновий шар (25—30 км над поверхнею планети), вище від якого живе зазвичай гине під дією космічних випромінювань.

Межа біосфери в літосфері також чітко не окреслена. Починаючи з глибин 0,5—2 м від земної поверхні кількість живої речовини зменшується в логарифмічній послідовності. На глибинах понад 10 м породи, як правило, вже стерильні. Та навіть у товщі стерильної породи іноді трапляються острівці життя. Найбільші глибини, де знайдено живу речовину, — 2—3 км. У нафтових родовищах на цих глибинах виявлено свою, «нафтову», мікрофлору. Нафта залягає також і на значно більших глибинах — до 5—7 км. Припускають, що й у таких глибинних родовищах можна знайти «нафтові» бактерії. Деякі дослідники нижньою межею біосфери вважають глибини, на яких температура літосфери починає перевищувати 100 °С: близько 10 км на рівнинах і 7—8 км у горах. Межі біосфери в гідросфері окреслені чітко: біосфера охоплює всю гідросферу, в тому числі найбільші океанічні западини до 11 км, де існує значна кількість глибоководних видів.

У цілому екологічний діапазон поширення живої речовини досить великий.

Біосфера – жива оболонка Землі.

Функції живої речовини.

• окиснення;

• концентрація;

• перерозподіл хімічних елементів.

Основні властивості живої речовини:

• високоорганізована внутрішня структура;

• здатність уловлювати із зовнішнього середовища й трансформува­ти речовини та енергію, забезпечуючи ними процеси своєї життєдіяль­ності;

• здатність підтримувати сталість власного внутрішнього середовища, незважаючи на коливання умов середовища зовнішнього, якщо ці коливання сумісні з життям;

• здатність до самовідтворення шляхом розмноження.

Жива речовина існує у формі конкретних живих одиниць — організмів (індивідів), які, своєю чергою, групуються в більш або менш дискретні одиниці існування матерії — види.

2 Природні ресурси Землі та їх значення в житті людини

При́ро́дні ресурси — це однорідні складові природи, що є елементами екосистеми і придатні для задоволення певних потреб людини. Природні ресурси поділяються на ресурси неживої природи і ресурси живої природи.

Ресурси поділяються на: первинні, вторинні, невичерпні, вичерпні, відновні і невідновні.

Природними ресурсами є земельні ресурси, надра, води, повітряний простір, клімат, радіочастотний ресурс, тваринний світ, рослинний світ, альтернативні джерела енергії.

Розрізняють поновлювані і непоновлювані природні ресурси.

Непоновнювальні природні ресурси — ресурси природи, що зовсім не відновлюють свій кількісний і якісний стан після використання їх або відновлюють його протягом тривалого часу. Належать до вичерпних природних ресурсів, куди включають більшість корисних копалин (руди, вугілля, нафта, горючі сланці, мінеральні будівельні матеріали тощо).

Поновнювальні природні ресурси — ресурси рік, озер, морів, океану, рослинний і тваринний світ тощо.

3 Кругообіг речовин та енергії в біосфері

Існування життя на Землі залежить не лише від потоку енергії, а й від кругообігу речовин у біосфері. Будь-які живі організми дістають із довкілля хімічні елементи, котрі потім використовують на побудову чи підтримання своїх тіл і на забезпечення процесів розмноження. Всього відомо близько 80 елементів, необхідних біоті. З продуктами життєдіяльності або після смерті ці елементи знову потрапляють у довкілля — атмосферу, гідросферу чи літосферу, й у подальшому використовуються іншими організмами. Отже, в біосфері постійно відбувається кругообіг речовин. Прямо чи опосередковано цей кругообіг здійснюється за рахунок сонячної енергії та сил гравітації.

Хімічні елементи, які використовуються живою речовиною у великих кількостях і зазвичай становлять не менш як 0,1 % загальної маси організму, називають макроелементами. До макроелементів належать вуглець, кисень, водень, азот, фосфор, сірка, калій, магній і кальцій. Усі ці елементи, за винятком кисню й водню, називають також біогенними елементами, оскільки жива речовина вибірково й у значній кількості поглинає їх із неживого середовища й концентрує в клітинах. Елементи, необхідні організмам у менших кількостях (до 0,1 %), належать до мікроелементів. Це мідь, цинк, молібден, бор, йод, силіцій та ін.

Кругообіги кисню й водню. Кисень і водень входять до складу всіх органічних сполук. Вони поглинаються продуцентами в складі води й вуглекислого газу в процесі фотосинтезу, всіма іншими організмами — з органічною речовиною, створеною продуцентами, під час дихання (з атмосфери чи з водного розчину) й уживання питної води. Як кінцеві продукти біологічного кругообігу, водень і частина кисню повертаються в неживе середовище також у вигляді води, а кисень, окрім того, виділяється в молекулярній формі в атмосферу рослинами-продуцентами як один із кінцевих продуктів фотосинтезу.

Кругообіг вуглецю. Вуглець — це основа органічних речовин. Він входить до складу білків, жирів, вуглеводів, нуклеїнових кислот та інших речовин, необхідних для існування живої речовини. До первинних джерел вуглецю в біосфері належать атмосферний вуглекислий газ, що становить 0,036 % загального об'єму тропосфери, й вуглекислий газ, розчинений у воді Світового океану, де його кількість у 50 разів вища, ніж в атмосфері. Неорганічний вуглець доступний лише для продуцентів — рослин і невеликої групи хемотрофних бактерій. Унаслідок процесів фото- й хемосинтезу вуглець зв'язується в молекули сахарів, які потому використовуються для створення інших органічних сполук. У такому вигляді вуглець стає доступним для консументів і редуцентів. У результаті процесів дихання й бродіння органічні речовини в клітинах окиснюються з виділенням енергії й вуглекислого газу, який знову або потрапляє в атмосферу, або розчиняється у воді, а також утворює іони карбонатів. Органічна речовина загиблих особин також розпадається з утворенням вуглекислого газу. Цей процес здійснюється редуцентами. Якщо з якихось причин відмерлі рештки не були використані редуцентами, вони нагромаджуються в літосфері і з часом трансформуються у вуглецевмісні копалини — торф, вугілля, нафту.

Кругообіг азоту. Атмосферний азот, що перебуває в молекулярній формі, доступний тільки для нечисленної групи азотфіксувальних бактерій і синьозелених водоростей. Азотфіксатори, засвоюючи молекулярний азот, залучають його до складу органічної речовини свого тіла, тобто переводять в органічну форму. Після відмирання органічний азот трансформується в мінеральну форму (амоній, нітрати або нітрити) амоніфікуючими й нітрифікуючими бактеріями. Мінеральний азот доступний лише для рослин, які засвоюють його й переводять в органічну форму (зокрема в білки й нуклеїнові кислоти), й у такому вигляді азот стає доступним для консументів — тварин і грибів. Після їх відмирання азот знову використовується бактеріями амоніфікаторами й нітрифікаторами. Мінеральний азот використовують також бактерії денітрифікатори, які, врешті-решт, переводять його в молекулярну форму й повертають в атмосферу. Цикл замикається.

Кругообіг фосфору. На відміну від азоту, джерелом фосфору є не атмосфера, а земна кора. В процесі вивітрювання гірських порід фосфор переходить у ґрунтовий розчин і стає доступним для рослин. Він входить передусім до складу нуклеїнових кислот, аденозинтрифосфорної кислоти (АТФ), фосфоліпідів. Із цими органічними речовинами фосфор передається ланцюгами живлення від продуцентів до консументів і повертається в грунт у вигляді органічних решток і продуктів життєдіяльності. В результаті процесів мінералізації, які здійснюються бактеріями-редуцентами, фосфор знову переходить у неорганічні форми й стає доступним для рослин. Проте в природі найчастіше саме нестача фосфору стримує розвиток біоти. З одного боку, фосфорні сполуки швидко вимиваються в Світовий океан. Цьому сприяють процеси ерозії грунту. Багато фосфору виноситься в океан і з неочищеними стічними водами. В океані цей фосфор частково використовується мікро- й макроскопічними водоростями, а потім споживається морськими консументами та редуцентами. Деяка частина фосфору може перевідкладатися на суші. Наприклад, послід морських рибоїдних птахів, який містить багато фосфору, нагромаджується в пташиних колоніях і на пташиних базарах, утворюючи так зване гуано — корисну копалину, шо інтенсивно добувається в деяких країнах і використовується для виробництва фосфатних мінеральних добрив (наприклад, у Чилі). Але більша частина фосфору нагромаджується на дні з відмерлими рештками морської біоти. Цей фосфор може знову стати доступним для біоти тільки з часом у геологічному вимірі, наприклад після підняття певних ділянок морського дна (щоправда, сьогодні людина вже почала розробляти й морські родовища фосфоритів). З іншого боку, на суші значна частина мінерального фосфору утворює нерозчинні комплекси з ґрунтовими частинками й стає недоступною для продуцентів, отже, й для інших ланок трофічних ланцюгів. Лише деякі грунтові гриби здатні вилучати фосфорні сполуки з цих комплексів.

Кругообіг сірки. Сірка — це необхідний компонент багатьох органічних речовин, серед яких передусім слід зазначити амінокислоту цистеїн. Головним джерелом сірки є розчинені у воді продукти вивітрювання гірських порід (найчастіше сульфіди заліза — основний компонент колчеданів) або сірководень і сірчистий газ, які виділяються в атмосферу вулканами, гейзерами, гарячими джерелами. Сірководень, окиснений атмосферним киснем до сірчистого газу, розчиняється у водяній парі атмосфери й випадає з дощем на поверхню планети. До складу живої речовини сірка потрапляє шляхом поглинання розчинених у воді іонів сульфатів рослинами-продуцентами. Потім сірка в складі рослинних білків ланцюгами живлення потрапляє до консументів і редуцентів. У анаеробних умовах (наприклад, у болотах) редуценти розкладають білки з виділенням сірки у вигляді сірководню, який може бути окиснений до молекулярної сірки або до розчинних сульфатів і сульфідів. У такій формі сірка знову стає доступною для продуцентів. Сьогодні кругообіг сірки під впливом людини зазнає суттєвих змін: майже третина сірки, що циркулює в біосфері, потрапляє в атмосферу з димогазовими викидами заводів, фабрик і теплових електростанцій. Ця «зайва» сірка, що розчиняється в атмосфері з утворенням сірчаної й сірчистої кислот, випадає у вигляді кислотних дощів, які призводять до швидкої деградації багатьох екосистем.

Кругообіги калію, магнію та кальцію. Ці елементи у вигляді іонів потрапляють у живу речовину в процесі поглинання води рослинами, а також під час уживання питної води. Вони виконують різноманітні функції. Наприклад, калій необхідний для роботи калій-натрієвого насоса клітин, магній — обов'язкова складова хлорофілу, кальцій потрібний для підтримання постійного рН цитоплазми, є головним компонентом панцирів, будиночків, скелетів багатьох тварин. Подібно до азоту, фосфору й сірки, ці елементи мігрують трофічними ланцюгами від продуцентів через консументи до редуцентів. Після загибелі організму вони швидко переходять у водні розчини й знову стають придатними для подальшого використання. У морях кальцій і магній частково вилучаються з біологічного кругообігу й консервуються в осадових породах. Наприклад, мікроскопічні морські водорості кокколітофориди перевідкладають кальцій у вигляді карбонатів на поверхні клітин, утворюючи так звані кокколіти. Після відмирання клітин кокколіти не встигають цілком розчинитись у воді й осідають на дно, формуючи крейдяні осадові породи. Лише в геологічному вимірі часу, після підняття певних ділянок дна, кальцій, нагромаджений у крейді, вивільнюється в процесі вивітрювання й знову стає доступним для біоти.

4 Екологічні катастрофи та їх класифікація

В історії Землі екологічні кризи неодноразово були наслідком виникнення різних природних ситуацій, раптових істотних змін умов існування, різких змін фізичних, хімічних чи біологічних факторів, як окремих, так і разом узятих, що спричиняло погіршення стану або загибель окремих живих істот, популяцій і навіть цілих екосистем. Такі надзвичайні кризові екологічні ситуації називаються катастрофами.

Залежно від причин виникнення катастрофи бувають природні й антропогенні, а залежно від розмірів заподіяної шкоди й кількості негативних наслідків, тобто від масштабів скоєного лиха, — локальні, регіональні чи глобальні. Своєю чергою, як природні, так і антропогенні катастрофи залежно від фактора-збудника поділяються на космічні, ендогенні, тектонічні, екзогенні, метеорологічні, хімічні, фізичні та ін.

Природні катастрофи спричиняються екзогенними й ендогенними факторами, тобто зовнішніми навколоземними або космічними та внутрішніми силами Землі, зумовленими процесами в її надрах. Зовнішні та внутрішні сили тісно пов'язані між собою, розвиток одних часто стимулює появу інших.

До зовнішніх сил природи, здатних призвести до катастрофічних наслідків для екосистем, належать: зміни магнітного, електричного, гравітаційного полів і радіаційного поясу, спричинені явищами, що відбуваються в космічному просторі (спалахи наднових зірок, проходження поблизу Землі великих космічних тіл); падіння на Землю великих метеоритів; урагани; повені; цунамі; сильні посухи; страшні зливи; зсуви; осипи; селі; обвали. Внутрішніми силами Землі викликаються надзвичайні екологічні ситуації: виверження вулканів; землетруси; переміщення велетенських мас гірських порід через утворення в земній корі великих розломів тощо.

Антропогенні катастрофи поділяють на катастрофи хімічного, фізичного, інженерно-геологічного, мілітаристичного та комплексного характеру.

Перше місце серед них належить катастрофам, пов'язаним із військовою діяльністю, війнами, масштабними випробуваннями ядерної зброї та військовими навчаннями, випробуваннями хімічної й бактеріологічної зброї. Світова термоядерна війна може в лічені секунди знищити все людство й більшість живих істот планети.

Зросла кількість катастроф, пов'язаних із розвитком нафтовидобувної, нафтопереробної промисловості та атомної енергетики. Потенційну загрозу виникнення надзвичайних екологічних ситуацій становлять усі великі нафто- й газосховища, трубопроводи, склади всіляких хімічних речовин, особливо — отруйних (пестициди, кислоти, аміак тощо).

Будь-які широкомасштабні втручання в природні екосистеми також мають катастрофічні наслідки. Наприклад, унаслідок будівництва на великих річках гребель і водосховищ відбувається ось що:

• кардинально змінюється режим річкового стоку (в багато разів уповільнюється);

• змінюється тепловий режим;

• змінюється характер випадання опадів, розчинення солей, їх відкладення, біохімічних та інженерно-геологічних процесів:

• різко змінюються умови взаємозв'язку річкових і підземних вод у даному басейні, рівневий режим, фізичні й хімічні властивості поверхневих і зв'язаних з ними підземних вод;

• розвиваються процеси стагнації (гниття) й «цвітіння», застою, нагромадження всіх видів забруднювачів, шо змиваються з водозборів і приносяться вітрами;

• вимирають ті види водяних організмів, зокрема риба, які потребують чистої води й міграції вздовж русла:

• гинуть заплави — найцінніші природні об'єкти.

Велике гідрологічне будівництво в будь-якому річковому басейні — це практично екологічна катастрофа для нього.

Те саме можна сказати й про широкомасштабні іригаційні роботи (осушування боліт на Поліссі, зрошення на півдні України), які призводять до деградації болотних екосистем, загибелі малих річок, зміни шляхів міграції перелітних птахів, зміни режимів та обсягів підземних вод, засолення грунтів.

Катастрофічно впливає на природні ландшафти будівництво великих шахт, відкритих кар'єрів, автомагістралей, летовищ, потужних ліній електропередач, каналів, тунелів, великих сміттєзвалищ і шламосховищ.

Зазначені вище екологічні катастрофи, пов'язані з широкомасштабною людською діяльністю, мають локальний, іноді — регіональний характер.

Ураховуючи гіркий досвід недбалого природокористування, люди повинні у своїй майбутній діяльності зважати на Закони Природи, чітко уявляти наслідки свого втручання в життя біосфери, що проявляться як найближчим часом, так і пізніше, через 50—100 років. Використовуючи весь загальнолюдський інтелект і набуті знання в галузі охорони природи та раціонального споживання її ресурсів, розвиваючи міжнародне співробітництво, обмінюючись інформацією, надаючи наукову, матеріальну й технічну допомогу, необхідно домогтись ефективного вирішення головної проблеми — зберегти сферу життя на Землі.

Закріплення знань

1 Які функції виконує жива речовина й чим вона відрізняється від неживої?

2 Назвіть основні властивості живої речовини.

3 Що таке біосфера й де проходять її межі?

4 Поясніть, як виникла киснева атмосфера й на якому етапі розвитку Землі молекулярний кисень становив небезпеку для живої речовини.

5 Що таке надзвичайні екологічні ситуації?

6 До яких наслідків призводить будівництво на великих річках гребель і водосховищ?

7 Які екологічні функції води?

8 Які екологічні функції літосфери?

9 Наведіть кілька прикладів природних та антропогенних катастроф.