Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
математика.docx
Скачиваний:
23
Добавлен:
28.04.2019
Размер:
3.86 Mб
Скачать
  1. Понятие сложной функции. Правило вычисления производной сложной функции.

Сложная функция – функция от функции. Если z – функция от у, т.е. z(y), а у, в свою очередь, – функция от х, т.е. у(х), то функция f(x) = z(y(x)) называется сложной функцией (или композицией, или суперпозицией функций) от х.

В такой функции х – независимая, а у – промежуточная переменная. При этом сложная функция определена для тех значений независимой переменной, для которых значения промежуточной функции у входят в область определения функции z(y).

Правило.

Если функция f имеет производную в точке x0, а функция g имеет производную в точке y0 = f(x0), то сложная функция h(x) = g(f(x)) также имеет производную в точке x0.

6) Теорема Ро́лля (теорема о нуле производной) утверждает, что Если вещественная функция непрерывна на отрезке [a;b] и дифференцируема на интервале (a;b), принимает на концах этого интервала одинаковые значения, то на этом интервале найдётся хотя бы одна точка, в которой производная функции равна нулю.

Геометрический смысл

Теорема утверждает, что если ординаты обоих концов гладкой кривой равны, то на кривой найдется точка, в которой касательная к кривой параллельна оси абсцисс.

Следствие

Если непрерывная функция обращается в ноль в различных точках, то ее производная обращается в ноль по крайней мере в − 1 различных точках[1], причем эти нули производной лежат в выпуклой оболочке нулей исходной функции. Это следствие легко проверяется для случая действительных корней, однако имеет место и в комплексном случае.

Теорема Лагранжа

Пусть функция f(x):

  1. непрерывна на отрезке [a, b];

  2. дифференцируема в интервале (a, b).

Тогда существует точка с О (a,b)такая, что

f(b) −f(a) = '(c) · (− a) .

(1)

Формула (1) называется формулой Лагранжа, или формулой конечных приращений

7) Определение монотонной функции. Достаточное условие монотонности функции на промежутке .

Моното́нная фу́нкция — это функция, приращение которой не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной. Монотонная функция — это функция, меняющаяся в одном и том же направлении.

Функция возрастает, если большему значению аргумента соответствует большее значение функции. Функция убывает, если большему значению аргумента соответствует меньшее значение функции.

Достаточное условие.

Если функция f(x) дифференцируема на (a,b) и f/(x)≥0 (f/(x)≤0) на (a,b), то f(x) не убывает (не возрастает) на (a,b). Доказательство Рассмотрим случай когда f/(x)≥0. Рассмотрим две точки x1,x2∈(a,b) и применим формулу Лагранжа. На[x1,x2] функция f(x) удовлетворяет всем условиям этой теоремы. Следует, чтоx1<x2: f(x2)−f(x1)=f/(c)(x2−x1), где c∈(x1,x2) и правая часть больше нуля, значит f(x2)−f(x1)≥0 илиf(x2)≥f(x1) при x2>x1, функция не убывает. Теорема доказана.

8) Экстремум функции

Экстре́мум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума. В математическом анализевыделяют также понятие локальный экстремум (соответственно минимум или максимум).

Определения

Пусть дана функция   и   — внутренняя точка области определения f. Тогда

  • x0 называется точкой локального максимума функции f, если существует проколотая окрестность   такая, что

  • x0 называется точкой локального минимума функции f, если существует проколотая окрестность   такая, что

Если неравенства выше строгие, то x0 называется точкой строгого локального максимума или минимума соответственно.

  • x0 называется точкой абсолютного (глобального) максимума, если

  • x0 называется точкой абсолютного минимума, если

Значение функции f(x0) называют (строгим) (локальным) максимумом или минимумом в зависимости от ситуации. Точки, являющиеся точками (локального) максимума или минимума, называются точками (локального) экстремума.

Необходимые условия существования локальных экстремумов

  • Лемма Ферма. Пусть функция   дифференцируема в точке локального экстремума x0. Тогда:

 .

  • Если в точке экстремума существует первая частная производная (по какому-либо аргументу), то она равна нулю.