Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПУ учебник.docx
Скачиваний:
44
Добавлен:
30.04.2019
Размер:
6.43 Mб
Скачать
  1. Подготовка жесткого диска

Если используется жесткий диск с интерфейсом SATA, пропустите это действие и перейдите к разделу «Определение типа файловой системы, которую необходимо использовать». Если используется жесткий диск с интерфейсом IDE, подключите кабели и установите перемычки в соответствии с назначением жесткого диска (например, главный или подчиненный) и внесите соответствующие изменения в BIOS (или CMOS). Сведения о подключении кабелей, установке перемычек и внесении соответствующих изменений в BIOS или CMOS см. в документации, которая поставлялась вместе с жестким диском и материнской платой.

Определение типа файловой системы, которая будет использоваться

Можно использовать файловую систему NTFS или FAT. Предпочтительной для форматирования жесткого диска является файловая система NTFS (кроме случаев, когда необходимо установить более раннюю версию операционной системы Windows, которая не поддерживает работу с разделами NTFS). Дополнительные сведения о различиях между файловыми системами FAT и NTFS см. в следующих статьях базы знаний Майкрософт:

AT является наиболее простой из поддерживаемых Windows NT файловых систем. Основой файловой системы FAT является таблица размещения файлов, которая помещена в самом начале тома. На случай повреждения на диске хранятся две копии этой таблицы. Кроме того, таблица размещения файлов и корневой каталог должны храниться в определенном месте на диске (для правильного определения места расположения файлов загрузки).

Диск, отформатированный в файловой системе FAT, делится на кластеры, размер которых зависит от размера тома. Одновременно с созданием файла в каталоге создается запись и устанавливается номер первого кластера, содержащего данные. Такая запись в таблице размещения файлов сигнализирует о том, что это последний кластер файла, или указывает на следующий кластер.

Обновление таблицы размещения файлов имеет большое значение и требует много времени. Если таблица размещения файлов не обновляется регулярно, это может привести к потере данных. Длительность операции объясняется необходимостью перемещения читающих головок к логической нулевой дорожке диска при каждом обновлении таблицы FAT.

Каталог FAT не имеет определенной структуры, и файлы записываются в первом обнаруженном свободном месте на диске. Кроме того, файловая система FAT поддерживает только четыре файловых атрибута: «Системный», «Скрытый», «Только чтение» и «Архивный»

Преимущества файловой системы FAT

На компьютере под управлением Windows NT в любой из поддерживаемых файловых систем нельзя отменить удаление. Программа отмены удаления пытается напрямую обратиться к оборудованию, что невозможно при использовании Windows NT. Однако если файл находился в FAT-разделе, то, запустив компьютер в режиме MS-DOS, удаление файла можно отменить. Файловая система FAT лучше всего подходит для использования на дисках и разделах размером до 200 МБ, потому что она запускается с минимальными накладными расходами.

Недостатки файловой системы FAT

Как правило, не стоит использовать файловую систему FAT для дисков и разделов, чей размер больше 200 МБ. Это объясняется тем, что по мере увеличения размера тома производительность файловой системы FAT быстро падает. Для файлов, расположенных в разделах FAT, невозможно установить разрешения.

Разделы FAT имеют ограничение по размеру: 4 ГБ под Windows NT и 2 ГБ под MS-DOS.

Обзор файловой системы NTFS

С точки зрения пользователя файловая система NTFS организует файлы по каталогам и сортирует их так же, как и FAT. Однако, в отличие от FAT на диске нет специальных объектов и отсутствует зависимость от особенностей установленного оборудования (например, сектор размером 512 байт). Кроме того, на диске отсутствуют специальные хранилища данных (таблицы FAT).

Эта файловая система представляет собой гибкую платформу с широкими функциональными возможностями, которую могут использовать другие файловые системы. Кроме того, в NTFS полностью реализована модель безопасности Windows NT и поддержка нескольких потоков данных. Файл данных перестал быть отдельным потоком данных. Кроме того, пользователи могут добавлять собственные атрибуты файлов.

Во-первых, в NTFS значительно –16 экзабайт или 18 446 744 073 709 551 616 байт – увеличен допустимый раздел файлов и томов. В NTFS для решения проблемы фиксированного размера сектора снова применена концепция кластеров, ранее использованная в файловой системе FAT. Это было сделано для улучшения аппаратной независимости операционной системы Windows NT при ее использовании с жесткими дисками, изготовленными по другой технологии. Таким образом, была принята точка зрения, что деление диска на секторы размером 512 не всегда является оптимальным. Размер кластера определяется кратным числом единичных блоков жесткого диска.

NTFS лучше всего подходит для использования с томами размером более 400 МБ. С увеличением размера тома производительность файловой системы NTFS не падает, как у FAT. Благодаря способности к восстановлению в NTFS отсутствует необходимость использования каких-либо программ восстановления диска. Описание других преимуществ файловой системы NTFS можно найти в следующих источниках:

Недостатки файловой системы NTFS

Из-за дополнительного расхода дискового пространства файловую систему NTFS не рекомендуется использовать с томами размером менее 400 МБ. Такой расход объясняется необходимостью хранения системных файлов NTFS (в разделе размером 100 МБ для этого требуется около 4 МБ).

В настоящее время NTFS не имеет встроенного шифрования файлов. Следовательно, можно загрузить MS-DOS (или другую операционную систему) и воспользоваться низкоуровневой программой редактирования диска для просмотра хранящихся в томе NTFS данных.

С помощью файловой системы NTFS нельзя форматировать дискеты. Windows NT форматирует дискеты с помощью FAT, так как объем служебной информации, необходимой для функционирования NTFS, не помещается на дискете.

Имена файлов могут состоять не более чем из 255 символов, включая любое расширение. В именах сохраняется регистр введенных символов, но сами имена не зависят от регистра. NTFS не различает имена в зависимости от регистра. В именах могут быть использованы любые символы за исключением указанных ниже. ? " / \ < > * | :

О сновные компоненты накопителей на жестких дисках

К основным элементам конструкции типичного накопителя на жестком диске относятся следующие:

  • диски;

  • головки чтения/записи;

  • механизм привода головок;

  • двигатель привода дисков;

  • печатная плата со схемами управления (контроллер);

  • кабели и разъемы;

Диски, двигатель привода дисков, головки и механизм привода головок обычно размещаются в герметичном корпусе, который называется HDA (Head Disk Assembly — блок головок и дисков). Обычно этот блок рассматривается как единый узел; его почти никогда не вскрывают. Прочие узлы, не входящие в блок HDA (печатная плата, лицевая панель, элементы конфигурации и монтажные детали) являются съемными.

Раньше почти все диски производились из алюминиевого сплава, довольно прочного и легкого. Но со временем возникла потребность в накопителях, сочетающих малые размеры и большую емкость. Поэтому в качестве основного материала для дисков стало использоваться стекло, а точнее, композитный материал на основе стекла и керамики.

Независимо от того, какой материал используется в качестве основы диска, он покрывается тонким слоем вещества, способного сохранять остаточную намагниченность после воздействия внешнего магнитного поля. Этот слой называется рабочим или магнитным, и именно в нем сохраняется записанная информация. Самыми распространенными являются следующие типы рабочего слоя:

  • оксидный;

  • тонкопленочный;

  • двойной антиферромагнитный (antiferromagnetically coupled — AFC).

В накопителях на жестких дисках для каждой из сторон каждого диска предусмотрена собственная головка чтения/записи. Все головки смонтированы на общем подвижном каркасе и перемещаются одновременно.

Конструкция каркаса с головками довольно проста. Каждая головка установлена на конце рычага, закрепленного на пружине и слегка прижимающего ее к диску. Диск как бы зажат между парой головок (сверху и снизу).

Когда накопитель выключен, головки касаются дисков под действием пружин. При раскручивании дисков аэродинамическое давление под головками повышается и они отрываются от рабочих поверхностей. Когда диск вращается на полной скорости, зазор между ним и головками может составлять 0,5–5 микродюймов и даже больше. Головка чтения записи находиться между двумя подтирающими головками, которые предназначены для того, чтобы «подтирать» остаточную информацию между дорожками. Такой принцип чтения записи называется «туннельным»

Пожалуй, еще более важной деталью накопителя, чем сами головки, является механизм, который устанавливает их в нужное положение и называется приводом головок. Именно с его помощью головки перемещаются от центра к краям диска и устанавливаются на заданный цилиндр. Существует много конструкций механизмов привода головок, но их можно разделить на два основных типа:

  • с шаговым двигателем;

  • с подвижной катушкой.

Тип привода во многом определяет:

  • быстродействие и надежность накопителя,

  • достоверность считывания данных,

  • его температурную стабильность,

  • чувствительность к выбору рабочего положения и вибрациям.

Накопители с приводами на основе шаговых двигателей гораздо менее надежны, чем устройства с приводами от подвижных катушек. Привод - самая важная деталь накопителя.

Контроллеры жестких дисков

Собственно контроллер накопителя физически расположен на плате электроники и предназначен для обеспечения операций преобразования и пересылке информации от головок чтения/записи к интерфейсу накопителя. Часто, контроллером называют интерфейс накопителя или интерфейс ПК с накопителем, что в общем не верно. Контроллер жестких дисков представляет собой сложнейшее устройство - микрокомпьютер, со своим процессором, ОЗУ и ПЗУ, схемами и системой ввода/вывода и т.п.. Однако, в большинстве случаев, производители размещают их в одном или двух микрочипах.

Жесткие диски (винчестеры) имеют следующие основные характеристики:

  • Объем (емкость), то есть тем, сколько информации помещается на диске. Основной параметр винчестера.

  • Скорость передачи данных показывает, какой объем данных передается при записи или считывании данных, содержащихся на жестком диске за единицу времени. Средняя скорость передачи данных считается более важной характеристикой, чем скорость передачи данных интерфейса. Это связано с тем, что средняя скорость представляет собой действительную скорость непосредственного считывания данных с поверхности жесткого диска.

  • Скорость вращения диска (измеряется в оборотах/мин). Обычно современные жесткие диски имеют скорость вращения от 5400 до 7200 об/м. Чем выше скорость вращения, тем выше скорость обмена данными. Следует только учесть, что при возрастании скорости вращения увеличивается температура корпуса жесткого диска и диски со скоростью 7200 об/мин требуют дополнительного охлаждения.

  • Количество секторов на дорожке. Современные жесткие диски имеют различное количество секторов на дорожке в зависимости от того, внешняя ли это дорожка или внутренняя. Внешняя дорожка длиннее и на ней можно разместить больше секторов, чем на более короткой внутренней дорожке. Данные на чистый диск начинают записываться также с внешней дорожки.

  • Время поиска/время переключения головок/время переключения между цилиндрами. Как правило, в паспортных данных на жесткий диск указывается среднее время поиска (average seek time). Все магнитные головки диска находятся в каждый момент времени над одним и тем же цилиндром, и время переключения определяется тем, насколько быстро выполняется переключение между головками при чтении или записи. Время переключения между цилиндрами - это время, требуемое для перемещения головок на один цилиндр вперед или назад. Все времена указываются в документации на жесткие диски в миллисекундах (ms).

  • Задержка позиционирования. После того, как головка оказывается над желаемой дорожкой, она ждет появления требуемого сектора на этой дорожке. Это время называется задержкой позиционирования и также измеряется в миллисекундах (ms).

  • Время доступа к данным- это комбинация из времени поиска, времени переключения головок и задержки позиционирования, измеряется также в миллисекундах (ms). Время поиска, это только показатель того, как быстро головка оказывается над нужным цилиндром. До тех пор, пока данные не записаны или считаны, следует добавить время на переключение головок и на ожидание необходимого сектора.

  • Кэш-память на жестком диске. Как правило, на всех современных жестких дисках есть собственная оперативная память, называемая кэш-памятью (cache memory). Производители жестких дисков часто называют эту память буферной. Размер и структура кэша у фирм-производителей и для различных моделей жестких дисков существенно отличаются. Обычно кэш память используется как для записи данных так и для чтения, но на SCSI дисках иногда требуется принудительное разрешение кэширования записи, так обычно по умолчанию кэширование записи на диск для SCSI запрещено..

  • Интерфейс: интеpфейс IDE (Integrated Drive Electronics - электpоника, встpоенная в пpивод, интеpфейс SCSI (Small Computer System Interface - интеpфейс малых компьютеpных систем)