Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ксе зачет.docx
Скачиваний:
6
Добавлен:
02.05.2019
Размер:
186.46 Кб
Скачать

4. Научные революции в истории естествознания:

4.1. Первая научная революция. Гелиоцентрическая система Мира Николая Коперника

Геоцентрическая система Птолемея, несмотря на высказываемые сомнения в ее правильность и верные догадки о движении Земли, продержалась в науке 14 веков. И только с началом географических открытий, с переходом от феодального средневековья к новому времени назрела необходимость заменить теорию Птолемея новой.

В1506г. Коперник, получив образование (математика, каноническое право, медицина, астрономия) вернулся из Италии на Родину в Польшу и в течение 10 лет оформил свои идеи, рожденные в годы учебы и странствий, в виде научной теории – гелиоцентрической системы Мира. В этой системе Коперник низвел Землю до роли рядовой планеты, Солнце он поместил в центре системы, а все планеты вместе с Землей двигались вокруг Солнца по круговым орбитам. В течение 16 лет Коперник ведет астрономические наблюдения Солнца, звезд и планет. В1532г., накануне своего шестидесятилетия, он закончил труд всей своей жизни “О вращениях небесных сфер”. В феврале 1543 г., бессмертное творение Н. Коперника “о вращениях небесных сфер” было напечатано Но сам Коперник увидел свою книгу лишь за несколько часов до смерти (24 мая 1543 г.). Сочинение “О вращениях небесных сфер” состоит из 6 книг. В первой книге приводятся все логические и физические аргументы в пользу движения Земли. Вторая книга содержит элементы сферической астрономии и заканчивается каталогом, содержащим координаты 1025 звезд. Третья книга содержит теорию движения Солнца, четвертая книга – теорию движения Луны. Самой главной является пятая книга, в которой дано полное развитие гелиоцентрической теории планетных движений со всеми математическими доказательствами. В шестой книге изложено видимое движение планет.

Огромное значение созданной Коперником гелиоцентрической системы Мира обнаружилось после того, как Кеплер открыл истинные законы эллиптического движения планет, а И.Ньютон на их основе – закон всемирного тяготения; когда Леверье и Адамс на основании данных этой системы предсказали существование и теоретически определили местоположение неизвестной планеты (Нептун), а Галле, направив телескоп в указанную ими точку неба, открыл неизвестную планету. В настоящее время учение Коперника не утратило своего значение т.к. оно раскрыло истинную картину Мира и совершило революционный переворот “в развитии системы научного мировоззрения”.

4.2.Вторая научная революция. Создание классической механики и экспериментального естествознания. Механическая картина мира

XVII, XVIII, XIX века. В этом трехсотлетнем периоде особую роль сыг­рал XVII век, ознаменовавшийся рождением современной науки, у истоков которой стояли такие выдающиеся уче­ные, как Галилей, Кеплер, Ньютон.

В учении Галилео Галилея (1564-1642) были заложе­ны основы нового механического естествознания. Как сви­детельствуют А. Эйнштейн и Л. Инфельд, «самая фундамен­тальная проблема, остававшаяся в течение тысячи лет не­разрешенной из-за сложности, — это проблема движения».

До Галилея общепринятым в науке считалось понима­ние движения, выработанное Аристотелем и сводившееся к следующему принципу: тело движется только при нали­чии внешнего на него воздействия, и если это воздействие прекращается, тело останавливается. Галилей показал, что этот принцип Аристотеля (хотя и согласуется с вашим повседневным опытом) является ошибочным. Вместо него Галилей сформулировал совершенно иной принцип, полу­чивший впоследствии наименование принципа инерции: тело либо находится в состоянии покоя, либо движется, не изменяя направления и скорости своего движения, если на него не производится какого-либо внешнего воздействия.

Большое значение для становления механики как на­уки имело исследование Галилеем свободного падения тел. Он установил, что скорость свободного падения тел не за­висит от их массы (как думал Аристотель), а пройденный падающим телом путь пропорционален квадрату времени падения. Галилей открыл, что траектория брошенного тела, движущегося под воздействием начального толчка и зем­ного притяжения, является параболой. Галилею принадле­жит экспериментальное обнаружение весомости воздуха, открытие законов колебания маятника, немалый вклад в разработку учения о сопротивлении материалов.

Галилей выработал условия дальнейшего прогресса естествознания, начавшегося в эпоху Нового времени. Он понимал, что слепая вера в авторитет Аристотеля сильно тормозит развитие науки. Истинное знание, считал Гали­лей, достижимо исключительно на пути изучения природы при помощи наблюдения, опыта (эксперимента) и воору­женного математическим знанием разума, — а не путем изучения и сличения текстов в рукописях античных мыс­лителей.

Росту научного авторитета Галилея способствовали его астрономические исследования, обосновывавшие и утверж­давшие гелиоцентрическую систему Коперника. Используя построенные им телескопы (вначале это был скромный оптический прибор с трехкратным увеличением, а впослед­ствии был создан телескоп и с 32-кратным увеличением), Галилей сделал целый ряд интересных наблюдений и от­крытий. Он установил, что Солнце вращается вокруг сво­ей оси, а на его поверхности имеются пятна. У самой боль­шой планеты Солнечной системы — Юпитера — Галилей обнаружил 4 спутника (из 13 известных в настоящее вре­мя). Наблюдения за Луной показали, что ее поверхность гористого строения и что этот спутник Земли имеет либ­рацию, т.е. видимые периодические колебания маятнико­вого характера вокруг центра. Галилей убедился, что кажу­щийся туманностью Млечный Путь состоит из множества отдельных звезд.

Но самым главным в деятельности Галилея как уче­ного-астронома было отстаивание справедливости учения Н. Коперника, которое подвергалось нападкам не только со стороны церковных кругов, но и со стороны некоторых ученых, высказывавших сомнения в правильности этого учения. Галилей сумел показать несостоятельность всех этих сомнений и дал блестящее естественнонаучное обосно­вание правильности идей Н.Коперника.

Однако остановить движение, прервать преемственность научной мысли было уже невозможно. С астрономическими наблюдениями Галилея, описанными им в сочинении «Звезд­ный вестник», ознакомился и дал им высокую оценку один из крупнейших математиков и астрономов конца XVI — первой трети XVII в. Иоган Кеплер (1571-1630). Эта оцен­ка астрономических исследований Галилея содержалась в работе Кеплера «Рассуждение о Звездном вестнике».

Кеплер занимался поисками законов небесной механи­ки и составлением звездных таблиц. На основе обобщения данных астрономических наблюдений он установил три закона движения планет относительно Солнца. В своем первом законе Кеплер отказывается от коперниковского представления о круговом движении планет вокруг Солн­ца. В этом законе утверждается, что каждая планета дви­жется по эллипсу, в одном из фокусов которого находит­ся Солнце. Согласно второму закону Кеплера, радиус-век­тор, проведенный от Солнца к планете, в равные промежут­ки времени описывает равные площади. Из этого закона следовал вывод, что скорость движения планеты по орби­те непостоянна и она тем больше, чем ближе планета к Солнцу. Третий закон Кеплера гласит: квадраты времен обращения планет вокруг Солнца относятся как кубы их средних расстояний от него.

Помимо сказанного, Кеплеру принадлежит немало заслуг в астрономии и математике. Он разработал теорию солнеч­ных и лунных затмений, предложил способы их предска­зания, уточнил величину расстояния между Землей и Солн­цем, составил так называемые Рудольфовы таблицы — по имени австрийского императора Рудольфа II, при дворе которого Кеплер занимал место астронома, сменив на этой должности умершего Тихо Браге. С помощью этих таблиц можно было с высокой степенью точности определять в любой момент времени положение планет. Кеплеру принад­лежит также решение ряда важных для практики стерео­метрических задач.

Поскольку Кеплер был сторонником гелиоцентриче­ской космологии Коперника и не скрывал этого, Ватикан относился к его сочинениям отрицательно, включив неко­торые из них в список запрещенных книг.

Конечно, главной заслугой Кеплера было открытие за­конов движения планет. Но он не объяснил причины их движения. И это неудивительно, ибо не существовало еще понятий силы и взаимодействия. В то время из разделов механики была разработана лишь статика — учение о рав­новесии (которая разрабатывалась еще в античности, в первую очередь, Архимедом), а в работах Галилея были сде­ланы первые шаги в разработке динамики. Но в полной мере динамика — учение о силах и их взаимодействии — была создана лишь позднее Исааком Ньютоном.

Вторая научная революция завершалась творчеством одного из величайших ученых в истории человечества, ка­ковым был Исаак Ньютон (1643-1727). Его научное на­следие чрезвычайно разнообразно. В него входит и созда­ние (параллельно с Лейбницем, но независимо от него) диф­ференциального и интегрального исчисления, и важные астрономические наблюдения, которые Ньютон проводил с помощью собственноручно построенных зеркальных теле­скопов (он так же, как и Галилей, именно телескопу обя­зан первым признанием своих научных заслуг), и большой вклад в развитие оптики (он, в частности, поставил опыты в области дисперсии света и дал объяснение этому явле­нию). Но самым главным научным достижением Ньютона было продолжение и завершение дела Галилея по созданию классической механики. Благодаря их трудам XVII век считается началом длительной эпохи торжества механи­ки, господства механистических представлений о мире.

Ньютон сформулировал три основных закона движения, которые легли в основу механики как науки. Первый за­кон механики Ньютона — это принцип инерции, впервые сформулированный еще Галилеем: всякое тело сохраняет состояние покоя или равномерного и прямолинейного дви­жения до тех пор, пока оно не будет вынуждено изменить его под действием каких-то сил. Существо второго зако­на механики Ньютона состоит в констатации того факта, что приобретаемое телом под действием какой-то силы ускорение прямо пропорционально этой действующей силе и обратно пропорционально массе тела. Наконец, третий закон механики Ньютона — это закон равенства действия и противодействия. Этот закон гласит, что действия двух тел друг на друга всегда равны по величине и направлены в противоположные стороны.

Данная система законов движения была дополнена от­крытым Ньютоном законом всемирного тяготения, соглас­но которому все тела, независимо от их свойств и от свойств среды, в которой они находятся, испытывают взаимное при­тяжение, прямо пропорциональное их массам и обратно пропорциональное квадрату расстояния между ними.

Пожалуй, ни одно из всех ранее сделанных научных открытий не оказало такого громадного влияния на даль­нейшее развитие естествознания, как открытие закона все­мирного тяготения. Огромное впечатление на ученых про­изводил масштаб обобщения, впервые достигнутый есте­ствознанием. Это был поистине универсальный закон природы, которому подчинялось все — малое и большое, земное и небесное. Этот закон явился основой создания не­бесной механики — науки, изучающей движение тел Сол­нечной системы.

Воображение ученых захватывала простота той карти­ны мира, которая складывалась на основе ньютоновской классической механики. В этой картине, носящей абстракт­ный характер, отбрасывалось все «липшее»: не имели зна­чения размеры небесных тел, их внутреннее строение, идущие в них бурные процессы. Оставались только массы и расстояния между центрами этих масс, к тому же связан­ные несложной формулой.

В 1687 году вышел в свет главный труд Ньютона «Ма­тематические начала натуральной философии», заложив­ший основы современной теоретической физики.

В своей знаменитой работе Ньютон предложил учено­му миру научно-исследовательскую программу, которая вскоре стала ведущей не только в Англии, на родине вели­кого ученого, но и в континентальной Европе. Свою науч­ную программу Ньютон назвал «экспериментальной фило­софией», подчеркивая решающее значение опыта, экспери­мента в изучении природы.

Идеи Ньютона, опиравшиеся на математическую физи­ку и эксперимент, определили направление развития есте­ствознания на многие десятилетия вперед. Вместе с тем, эти идеи предопределили механические взгляды на материаль­ный мир, которые господствовали в естествознании не толь­ко в течение XVII и XVIII веков, но и почти весь XIX век. В целом природа понималась как гигантская механиче­ская система, функционирующая по законам классической механики. Считалось, что в силу неумолимой необходимо­сти, действующей в природе, судьба даже отдельной мате­риальной частицы заранее предрешена на все времена. Ученые-естествоиспытатели видели в классической механи­ке прочную и окончательную основу естествознания.