Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия.rtf
Скачиваний:
1
Добавлен:
07.07.2019
Размер:
10.57 Mб
Скачать

Анодный процесс

S2-, I-, Br-, Cl-

Xn- – ne  X0

OH-

4OH- – 4e  O2 + 2H2O

NO3-, CO32-, SO42-, PO43-

2H2O – 4e  O2 + 4H+

КАТОДНЫЙ  ПРОЦЕСС

Li+, K+, Ca2+, Na+, Mg2+, Al 3+

2H2O + 2e ® H2 + 2OH-

H+

2H+ + 2e ® 2[H] ® H2

Zn2+, Fe2+, Fe 3+, Ni2+, Sn2+, Pb2+, Cu2+, Hg2+, Ag+

Metn+ + ne ® Met0

 25) Коррозия металлов — разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой. [2] Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса — «коррозионное разрушение». Образование гальванических пар с пользой применяют для создания батарей и аккумуляторов. С другой стороны, образование такой пары приводит к неблагоприятному процессу, жертвой которого становится целый ряд металлов, — коррозии. Под коррозией понимают происходящее на поверхности электрохимическое или химическое разрушение металлического материала. Наиболее часто при коррозии металл окисляется с образованием ионов металла, которые при дальнейших превращениях дают различные продукты коррозии. Коррозия может быть вызвана как химическим, так и электрохимическим процессом. Соответственно, различают химическую и электрохимическую коррозию металлов.

26) Катодная защита — это электрохимическая защита, основанная на наложении отрицательного потенциала на защищаемую деталь

Сдвиг потенциала защищаемого металлического объекта осуществлен с помощью внешнего источника постоянного тока (станции катодной защиты) или соединением с протекторным анодом, изготовленным из металла более электроотрицательного, относительно объекта. При этом поверхность защищаемого образца (детали конструкции) становится эквипотенциальной и на всех её участках протекает только катодный процесс. Обусловливающий коррозию, анодный процесс перенесен на вспомогательные электроды. Отсюда названия - "жертвенный анод", "жертвенный электрод". Если, однако, сдвиг потенциала в отрицательную сторону превысит определённое значение, возможна так называемая "перезащита", связанная с выделением водорода, изменением состава приэлектродного слоя и другими явлениями, что может привести к ускорению коррозии. Катодную защиту, как правило, совмещают с нанесением защитных покрытий.

Анодная защита -Метод снижения скорости коррозии металла путем поляризации его в пассивную область, где уровень растворения низок. (2) Наложение внешнего электрического потенциала, для того чтобы защитить металл от коррозионного разрушения. Применимо только к металлам, которые могут вести себя в активно-пассивном режиме. Противоположно Cathodic protectionКатодной защите.

Анодное покрытие.

Пленка на металлической поверхности, являющаяся результатом электролитической обработки на аноде.

Анодные покрытия. Если на металл нанести покрытие из другого, более электроотрицательного металла, то в случае возникновения условий для электрохимической коррозии * разрушаться будет покрытие, т.к. оно будет выполнять роль анода. В этом случае покрытие называется анодным. Примером анодного покрытия может служить хром, нанесенный на железо. В случае нарушения целостности покрытия при контакте с влажным воздухом будет работать гальванический элемент *: А (–) Cr | H2O, O2 | Fe (+) К на аноде: Cr – 2e ® Cr2+ на катоде: 2 H2O + O2 + 4e ® 4 OH– Cr2+ + 2 OH– ® Cr(OH)2 Гидроксид хрома (II) окисляется кислородом воздуха до Cr(OH)3: 4 Cr(OH)2 + 2H2O + O2 ® 4 Cr(OH)3 Таким образом, в результате электрохимической коррозии разрушается анодное покрытие. Катодные покрытия. У катодного покрытия стандартный электродный потенциал * более положителен, чем у защищаемого металла. Пока слой покрытия изолирует металл от окружающей среды, электрохимическая коррозия не протекает. При нарушении сплошности катодного покрытия оно перестает защищать металл от коррозии. Более того, оно даже интенсифицирует коррозию основного металла, т.к. в возникающей гальванопаре анодом служит основной металл, который будет разрушаться. В качестве примера можно привести оловянное покрытие на железе (луженое железо). Рассмотрим работу гальванического элемента, возникающего в этом случае. А (–) Fe | H2O, O2 | Sn (+) К на аноде: Fe – 2e ® Fe2+ на катоде: 2 H2O + O2 + 4e ® 4 OH– Fe2+ + 2 OH– ® Fe(OH)2 Разрушается защищаемый металл. Таким образом, при сравнении свойств анодных и катодных покрытий можно сделать вывод, что наиболее эффективными являются анодные покрытия. Они защищают основной металл даже в случае нарушения целостности покрытия, тогда как катодные покрытия защищают металл лишь механически.

27) Разрушается защищаемый металл. Таким образом, при сравнении свойств анодных и катодных покрытий можно сделать вывод, что наиболее эффективными являются анодные покрытия. Они защищают основной металл даже в случае нарушения целостности покрытия, тогда как катодные покрытия защищают металл лишь механически.

3) Электрохимическая защита. Различают два вида электрохимической защиты: катодная и протекторная. В обоих случаях создаются условия для возникновения на защищаемом металле высокого электроотрицательного потенциала.

Протекторная защита. Защищаемое от коррозии изделие соединяют с металлическим ломом из более электроотрицательного металла (протектора). Это равносильно созданию гальванического элемента, в котором протектор является анодом и будет разрушаться. Например, для защиты подземных сооружений (трубопроводов) на некотором расстоянии от них закапывают металлолом (протектор), присоединив его к сооружению (рисунок 8.3).

Схема протекторной защиты.  А – трубопровод;  Б – протектор;  В – проводник

Катодная защита отличается от протекторной тем, что защищаемая конструкция, находящаяся в электролите * (почвенная вода), присоединяется к катоду внешнего источника тока. В ту же среду помещают кусок металлолома, который соединяют с анодом внешнего источника тока (рисунок 8.4).

Схема катодной защиты.  А – конструкция;  Б – протектор

29)

30Энергия ионизации (мера проявления металлических свойств) — это энергия, необходимая для отрыва электрона от атома.

(Ca0- Ca2+ + 2е- - Н).

Чем больше электронов на внешнем электронном слое, тем больше энергия ионизации. С увеличением радиуса атома энергия ионизации уменьшается. Этим объясняется уменьшение металлических свойств в периодах слева направо и увеличение металлических свойств в группах сверху вниз. Цезий (Cs) — самый активный металл.

Энергия ионизации — разновидность энергии связи или, как её иногда называют, первый ионизационный потенциал (I1), представляет собой наименьшую энергию, необходимую для удаления электрона от свободного атома в его низшем энергетическом (основном) состоянии на бесконечность.

Энергия ионизации является одной из главных характеристик атома, от которой в значительной степени зависят природа и прочность образуемых атомом химических связей. От энергии ионизации атома существенно зависят также восстановительные свойства соответствующего простого вещества.

Для многоэлектронного атома существуют также понятия второго, третьего и т. д. ионизационных потенциалов, представляющих собой энергию удаления электрона от его свободных невозбуждённых катионов с зарядами +1, +2 и т. д. Эти ионизационные потенциалы, как правило, менее важны для характеристики химического элемента.

Энергия ионизации всегда имеет эндоэнергетическое значение (это понятно, так как чтобы оторвать электрон от атома, требуется приложить энергию, самопроизвольно это произойти не может).

На энергию ионизации атома наиболее существенное влияние оказывают следующие факторы:

  1. эффективный заряд ядра, являющийся функцией числа электронов в атоме, экранирующих ядро и расположенных на более глубоко лежащих внутренних орбиталях;

  2. радиальное расстояние от ядра до максимума зарядовой плотности наружного, наиболее слабо связанного с атомом и покидающего его при ионизации, электрона;

  3. мера проникающей способности этого электрона;

  4. межэлектронное отталкивание среди наружных (валентных) электронов.

На энергию ионизации оказывают влияние также и менее значительные факторы, такие, как квантовомеханическое обменное взаимодействие, спиновая и зарядовая корреляция и др.

Энергии ионизации элементов измеряется в Электронвольт на 1 атом или в Джоуль на моль.

лектроотрицательность (χ) — фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе общие электронные пары.

ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ, величина, характеризующая способность атома к поляризации ковалентных связей. Если в двухатомной молекуле А — В образующие связь электроны притягиваются к атому В сильнее, чем к атому А, то атом В считается более электроотрицательным, чем А.

величина, характеризующая способность атома к поляризации ковалентных связей. Если в двухатомной молекуле А Ч В образующие связь электроны притягиваются к атому В сильнее, чем к атому А, то атом В считается более электроотрицательным, чем А. Л. Полинг предложил (1932) для количеств. характеристики Э. использовать термохим. данные об энергии связей АЧА, В Ч В и А Ч В - соотв. Е АА, Е вв и Е АВ. Энергия гипотетической чисто ковалентной связи А Ч В (Е ков) принимается равной среднеарифметич. или среднегеометрич. значению величин EAA и Е ВВ. Если Э. атомов А и В различны, то связь А Ч В перестает быть чисто ковалентной и энергия связи Е АВ станет больше Е ков на величину

СРОДСТВО К ЭЛЕКТРОНУ - свойство атомов или молекул образовывать прочную связь с электроном, т. е. отрицательный ион. Характеристикой такой связи является энергия сродства атомов или молекул к электрону - энергия связи электрона в соответствующем отрицат. ионе, к-рая обычно обозначается ЕА (electron affinity). Эта энергия равна разности энергии нейтрального атома (молекулы) в основном состоянии и энергии осн. состояния образовавшегося отрицат. иона. У большинства атомов С. к э. связано с тем, что их внеш. электронные оболочки не заполнены (см. Атом ).В табл. приводятся значения энергии С. к э. атомов в осн. состоянии. Осн. и наиб. точная часть этой информации получена при исследовании фотораспада отрицат. ионов. В одном варианте этого метода отрицат. ионы разрушаются под действием лазерного излучения данной длины волны, энергия связи электрона устанавливается по измерениям энергии освободившихся электронов. В др. варианте данного метода для фоторазрушения отрицат. ионов используется излучение перестраиваемого лазера, что позволяет определить положение порога фотораспада отрицат. иона, а по нему и энергию связи электрона. Фотоэлектронный и лазерный методы определения энергии связи электрона в отрицат. ионе являются главными и при исследовании молекулярных отрицат. ионов. В табл. указан класс точности определения энергии С. к э.: О означает точность лучше 0,1%, 1 -лучше 1%; 2 - лучше 3%; 3 - выше 10%; 4 - хуже 10%. Отрицат. ион Не построен на метастабильном атоме Не. «Нет» в табл. означает, что стабильный отр

СРОДСТВО К ЭЛЕКТРОНУ - способность некоторых атомов и молекул присоединять добавочный электрон и превращаться в отрицательные ионы. Мерой сродства к электрону служит выделяющаяся при этом энергия. Наибольшим сродством к электрону обладают атомы галогенов (до 3-4 эВ). Отрицательное сродство к электрону означает, что присоединение электрона требует затраты соответствующей энергии.

31) Правило Хунда (Гунда) определяет порядок заполнения орбиталей определённого подслоя и формулируется следующим образом: суммарное значение спинового квантового числа электронов данного подслоя должно быть максимальным.

Это означает, что в каждой из орбиталей подслоя заполняется сначала один электрон, а только после исчерпания незаполненных орбиталей на эту орбиталь добавляется второй электрон. При этом на одной орбитали находятся два электрона с полуцелыми спинами противоположного знака, которые спариваются (образуют двухэлектронное облако) и, в результате, суммарный спин орбитали становится равным нулю.

Другая формулировка: Ниже по энергии лежит тот атомный терм, для которого выполняются два условия.

  1. Мультиплетность максимальна

  2. При совпадении мультиплетностей суммарный орбитальный момент L максимален.

Разберём это правило на примере заполнения орбиталей p-подуровня p-элементов второго периода (то есть от бора до неона (в приведённой ниже схеме горизонтальными чёрточками обозначены орбитали, вертикальными стрелками — электроны, причём направление стрелки обозначает ориентацию спина):

это элементы у которых идет заполнение s-подуровня электронов внешнего энергетического уровня. К ним относятся элементы главной подгруппы I и II группы

p-элементы - это хим.элементы, у которых частично заполнен p-подуровень, а d-элементы, у которых частично заполнен d-подуровень. Ниже даю таблицу, там указана электронная конфигурация столбиком около каждого элемента, красным цветом указаны s-элементы, желтым - p-элементы, синим - d-элементы, зеленым - f-элементы

p-блок в периодической таблице элементов — электронная оболочка атомов, валентные электроны которых с наивысшей энергией занимают p-орбиталь.

В p-блок входят последние шесть групп, исключая гелий (который находится в s-блоке). Данный блок содержит все неметаллы (исключая водород и гелий) и полуметаллы, а также некоторые металлы.

P-блок содержит в себе элементы, которые имеют различные свойства, как физические, так и механические. P-блок-неметаллы — это, как правило, высокореакционные вещества, имеющие сильную электроотрицательность, p-металлы — умеренно активные металлы, причём их активность повышается к низу таблицы химических элементов.

d-блок в периодической таблице элементов — электронная оболочка атомов, валентные электроны которых с наивысшей энергией занимают d-орбиталь.

Данный блок представляет собой часть периодической таблицы; в него входят элементы от 3 до 12 группы[1][2]. Элементы данного блока заполняют d-оболочку d-электронами, которая у элементов начинается s2d1 (третья группа) и заканчивается s2d10 (двенадцатая группа). Однако, существуют некоторые нарушения в этой последовательности, например, у хрома s1d5 (но не s2d4) вся одиннадцатая группа имеет конфигурацию s1d10 (но не s2d9). Одиннадцатая группа имеет заполненные s- и d-электроны.

D-блок-элементы так же известны как переходные металлы или переходные элементы.

32) Cвязь между атомами возникает при перекрывании их атомных орбиталей с образованием молекулярных орбиталей (МО). Различают два механизма образования ковалентной связи.

  • ОБМЕННЫЙ МЕХАНИЗМ - в образовании связи участвуют одноэлектронные атомные орбитали, т.е. каждый из атомов предоставляет в общее пользование по одному электрону:

Обменный механизм. Каждый атом дает по одному неспаренному электрону в общую электронную пару:

 

H + H ® H : H

 

®

Электроотрицательность - это способность атома притягивать электронную плотность от других атомов. Самый электроотрицательный элемент - фтор, самый электроположительный - франций.

 

Обменный механизм. К нему относят те случаи образования химической связи, когда каждый из двух связываемых атомов выделяет для обобществления по одному электрону, как бы обмениваясь ими. Для связывания ядер двух атомов нужно, чтобы электроны находились в пространстве между ядрами. Эта область в молекуле называется областью связывания (область наиболее вероятного пребывания электронной пары в молекуле). Чтобы произошел обмен не спаренными электронами у атомов необходимо перекрывание атомных орбиталей (рис. 10,11). В этом и заключается действие обменного механизма образования ковалентной химической связи. Атомные орбитали могут перекрываться только в том случае, если они обладают одинаковыми свойствами симметрии относительно межъядерной оси (рис. 10, 11, 22).

Валентность это способность атомов присоединять к себе электроны. Вот от этого и танцуй Значит всего 4 свободных электрона могут быть на внешнем подуровне (или уровне, затрудняюсь)

33) К d-элементам относят те элементы, атомы которых содержат валентные электроны на (n – 1)d ns-уровнях и составляют побочные (IIIВ–VIIВ, IВ, IIВ) подгруппы, занимая промежуточное положение между типичными s-металлами (IА, IIА) и p-элементами. Из 109 элементов периодической системы 37 относятся к d-элементам; из них последние 7 радиоактивны и входят в незавершенный седьмой период. Электронное строение атомов d-элементов определяет их химические свойства. 3d-Элементы по химическим свойствам существенно отличаются от 4d- и 5d-элементов. При этом элементы IVВ–VIIВ подгрупп очень схожи по многим химическим свойствам. Это сходство обусловлено лантаноидным сжатием, которое из-за монотонного уменьшения радиусов при заполнении 4f-орбиталей приводит к практическому совпадению радиусов циркония и гафния, ниобия и тантала, молибдена и вольфрама, технеция и рения. Элементы этих пар очень близки по физическим и особенно по химическим свойствам; первые шесть элементов встречаются в одних рудных месторождениях, трудно разделяются; их иногда называют элементами-близнецами.

По мере увеличения числа d-электронов в периоде они могут переходить с одного уровня на другой для достижения требуемой правилами Гунда одной из наиболее устойчивых конфигураций (d5, d10). Такие переходы реализуются, например, в случае Cr(3d54s1), Cu(3d104s1), Mo(4d55s1), Ag(4d105s1). Обращает на себя внимание тот факт, что в одной подгруппе существуют элементы с разными электронными конфигурациями, например: V(3d34s2), Nb(4d45s1) и Ta(5d36s2); Ni(3d84s2), Pd(4d105s0) и Pt(5d96s1). Палладий является единственным d-элементом с незаполненным s-уровнем.

Валентность можно определить также с помощью таблицы Менделеева - № группы у многих элементов совпадает с валентностью. У кальция, цинка - 2, у алюминия - 3, у фосфора -5. ПО формуле: у кислорода валентность 2,хотя он и в 6 группе ( почему, потом расскажут!). Известную валентность умножаем на количество атомов кислорода (1). Получили 2(общий множитель) Делим на 1 (число атомов цинка).Валентность цинка =2. Попробуй по этой схеме посчитать валентности в Аl2O3 (3х2 9вал. О)=6; 6:2=3( вал. Аl)

34) Ковалентная связь (атомная связь, гомеополярная связь) — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.

Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Электроны тем подвижнее, чем дальше они находятся от ядер.

Молекулой (новолатинское molecula) называется наименьшая частица вещества, обладающая его основными химическими свойствами и состоящая из атомов, соединенных между собой химическими связями.

Атомом называется наименьшая частица вещества, обладающая всеми химическими свойствами данного химического элемента. В состав атома входят положительно заряженное ядро и электроны, движущиеся в электрическом поле ядра. Заряд ядра по абсолютной величине равен суммарному заряду всех электронов атома. Электронными орбитами в атоме называются геометрические места точек, в которых с наибольшей вероятностью может быть обнаружен электрон. Простейшим атомом является атом водорода, состоящий из одного протона в ядре и одного электрона, движущегося в кулоновском электрическом поле ядра. Атомы инертных газов часто называют одноатомными молекулами.

Строение молекул

Физические и химические свойства молекул определяются их строением. Поэтому многие свойства могут быть предсказаны на основании структурной формулы. К таким свойствам относятся размеры, форма, до некоторой степени конформация молекул (т.е. взаимное расположение отдельных атомов) при нахождении вещества в растворе и, наконец, реакционная способность. В этом разделе сведены параметры, на основании которых можно прогнозировать свойства соединений. З

Молекулы, которые образованы атомами одного и того же элемента, как правило, будут неполярными, как неполярны и сами связи в них. Так, молекулы Н2, F2, N2 неполярны.

Молекулы, которые образованы атомами разных элементов, могут быть полярными и неполярными. Это зависит от геометрической формы.

олярность молекулы определяется разностью электроотрицательностей атомов, образующих двухцентровую связь, геометрией молекулы, а так же наличием неподеленных электронных пар, так как часть электронной плотности в молекуле может быть локализована не в направлении связей. Полярность связи выражается через ее ионную составляющую, то есть через смещение электронной пары к более электроотрицательному атому. Полярность связи может быть выражена через ее дипольный момент μ, равный произведению элементарного заряда на длину диполя *) μ = e ∙ l. Полярность молекулы выражается через ее дипольный момент, который равен векторной сумме всех дипольных моментов связей молекулы.

Дипольный момент химической связи обусловлен смещением электронного облака в сторону одного из атомов. Связь называют полярной, если соответствующий дипольный момент существенно отличается от нуля. Возможны случаи, когда отдельные связи в молекуле полярны. а суммарный дипольный момент молекулы равен нулю; такие молекулы наз. неполярными (напр., молекулы СО2 и CCl4). Если же дипольный момент молекулы отличен от нуля, молекула наз. полярной. Напр., молекула Н2О полярна; суммирование дипольных моментов двух полярных связей ОН также дает отличный от нуля дипольный момент, направленный по биссектрисе валентного угла НОН.

Порядок величины дипольный момент молекулы определяется произведением заряда электрона (1,6.10-19 Кл) на длину химической связи (порядка 10-10 м), т. е. составляет 10-29 Кл.м. В справочной литературе дипольный момент молекул приводят в дебаях (Д или D), по имени П. Дебая; 1 Д = 3,33564.10-30 Кл.м.

Дипольный момент электрический, векторная величина, характеризующая асимметрию распределения положительных и отрицательных зарядов в электрически нейтральной системе. Два одинаковых по величине заряда +q и —q образуют электрический диполь с дипольный момент m = q l, где l - расстояние между зарядами. Для системы из n зарядов qi радиусы-векторы которых ri, В молекулах и молекулярных системах центры положительных зарядов qА совпадают с положениями атомных ядер (радиусы-векторы rA), а электронное распределение описывается плотностью вероятности r(r).

35) ибридизация орбиталей — концепция смешения разных, но близких по энергии орбиталей данного атома, с возникновением того же числа новых гибридных орбиталей, одинаковых по энергии и форме. Гибридизация атомных орбиталей происходит при возникновении ковалентной связи между атомами. Гибридизация орбиталей очень полезна при объяснении формы молекулярных орбиталей и является интегральной частью теории валентных связей.

ГИБРИДИЗАЦИЯ АТОМНЫХ ОРБИТАЛЕЙ, квантовохим. способ описания перестройки орбиталей атома в молекуле по сравнению со своб. атомом. Являясь формальным мат. приемом, гибридизация атомных орбиталей позволяет отразить нарушение сферич. симметрии распределения электронной плотности атома при образовании хим. связи. Сущность гибридизации атомных орбиталей состоит в том, что электрон молекулы вблизи выделенного атомного ядра характеризуется не отдельной атомной орбиталью (АО), а линейной комбинацией атомных орбита-лей с разл. значениями азимутального и магнитного квантовых чисел.

Sp2 Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов

Одна s- и три р-орбитали смешиваются, и образуются четыре равноценные по форме и энергии sp3-гибридные орбитали

Только хлорид бериллия ВеCl2. Два атома хлора оттягивают электроны от атома Ве и оба заряжаются отрицательно, поэтому располагаются как можно дальше друг от друга, то есть по прямой Cl - Be -Cl. А четыре атома углерода как можно дальше в пространстве - это под углом 109° к вершинам тетраэдра.

В метане углерод находится в состоянии sp3-гибридизации, и соответственно угол между этими орбиталями 109 с небольшим градусов, а в BeCl2 в атоме бериллия происходит sp-гибридизация и соответственно угол между такими орбиталями равен 180 гр.

CH4

CCL4