Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
печать ответы на экзамен по физике.docx
Скачиваний:
2
Добавлен:
04.08.2019
Размер:
1.17 Mб
Скачать

4. Магнитное поле воздействует с определенной силой на любой перемещающийся в нем электрический заряд.

Сила, действующая на движущийся в магнитном поле электрический заряд, направлена перпендикулярно к магнитным силовым линиям.

Аналогично одиночному электрическому заряду проводник с током, помещенный в магнитном поле, также испытывает действие сил магнитного поля.

Величина механической силы, действующей на прямолинейный проводник с током, помещенный в однородное магнитное поле, определяется по формуле

где I – ток в амперах;

B – магнитная индукция в теслах;

l – активная длина провода с током в метрах;

α – угол, под которым расположен проводник по отношению к магнитным силовым линиям.

Направление механической силы, действующей на помещенный в магнитное поле проводник с током, определяет правило левой руки: если расположить ладонь левой руки так, чтобы силовые линии магнитного поля входили в нее, а вытянутые пальцы указывали направление тока, то отставленный большой палец укажет направление силы, действующей на проводник.

Если в однородном магнитном поле помещен плоский контур прямоугольной формы с током, то на него действует пара сил, стремящихся повернуть контур вокруг оси (рисунок в начале статьи).

Вращающий момент этой пары сил равен произведению величины одной из сил на расстояние (плечо) между токами приложения этих сил:

Вращающий момент, действующий на контур с током, можно определить по формуле

где В – магнитная индукция внешнего поля в теслах;

I – ток контура в амперах;

S – площадь проекции рамки на плоскость, перпендикулярную магнитным силовым линиям в квадратных метрах;

Мвр – вращающий момент в ньютон-метрах;

α – угол между перпендикуляром к плоскости контура и направлением магнитных силовых линий.

Контур с током стремится установиться во внешнем магнитном поле так, чтобы внутри контура внешнее магнитное поле и собственное магнитное поле контура совпали по своему направлению. При этом, α = 0 и Мвр = BIsin0 = 0.

Вращающий момент плоской катушки с числом витков ω определяется по формуле

Направление пары сил, действующих на контур с током и на плоскую катушку, определяется по правилу левой руки.

Два достаточно длинных прямолинейных и параллельно расположенных проводника одинаковой длины с токами I1 и I2 взаимодействуют друг с другом, причем сила взаимодействия равна

где µ – магнитная проницаемость среды;

d – расстояние между проводниками в метрах

l – длина проводника в метрах;

I1, I2 – сила тока в проводниках в амперах;

F – сила взаимодействия в ньютонах.

Два параллельных проводника с токами одинакового направления взаимно притягиваются, а проводники с токами противоположного направления взаимно отталкиваются.

Механические силы, действующие на проводник, совершают некоторую работу.

Работа сил магнитного поля определяется по формуле

где В – магнитная индукция внешнего магнитного поля в теслах;

I – сила тока в проводнике в амперах;

l – активная длина проводника в метрах;

d – расстояние, на которое переместился проводник с током под действием сил магнитного поля, в метрах;

А – работа сил магнитного поля в джоулях.

6. Теорема Гаусса — основная теорема электродинамики, которая применяется для вычисления электрических полей, входит в систему уравнений Максвелла. Она выражает связь между потоком напряжённости электрического поля сквозь замкнутую поверхность и зарядом в объёме, ограниченном этой поверхностью.

Общая формулировка: Поток вектора напряжённости электрического поля через любую, произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхностиэлектрическому заряду.

Где

— поток вектора напряжённости электрического поля через замкнутую поверхность S.

Q — полный заряд, содержащийся в объёме, который ограничивает поверхность S.

— электрическая постоянная.

Данное выражение представляет собой теорему Гаусса в интегральной форме.

В дифференциальной форме теорема Гаусса выражается следующим образом:

Здесь ρ — объёмная плотность заряда (в случае присутствия среды — суммарная плотность свободных и связанных зарядов), а — оператор набла.

Для теоремы Гаусса справедлив принцип суперпозиции, то есть поток вектора напряжённости через поверхность не зависит от распределения заряда внутри поверхности.

Физической основой теоремы Гаусса является закон Кулона или, иначе, теорема Гаусса является интегральной формулировкой закона Кулона.

7. Теорема о циркуляции индукции магнитного поля.

(Закон полного тока)

Циркуляция вектора индукции магнитного поля по замкнутому контуру равна магнитной постоянной умноженной на сумму токов, охватываемых этим контуром.

Если циркуляция не равна нулю, то поле вихревое, силовые линии замкнутые.

8.

1) Магнитное поле в веществе.

Различные вещества в той или иной степени способны к намагничиванию: то есть под действием магнитного поля, в которое их помещают, приобретать магнитный момент. Одни вещества намагничиваются сильнее, другие слабее. Будем называть все эти вещества магнетиками.

Для объяснения способности тел к намагничиванию, Ампер предположил, что в молекулах вещества циркулируют круговые токи (получившие впоследствии название молекулярных токов Ампера). Каждый такой ток обладает собственным магнитным моментом и создает в окружающем пространстве магнитное поле. В отсутствие внешнего магнитного поля токи Ампера ориентированы беспорядочным образом, вследствие чего обусловленное ими магнитное поле равно нулю. Суммарный магнитный момент тела также равен нулю (рис.11.1).

Рис.11.1. Молекулярные токи Ампера. Намагничивание вещества.

Под действием внешнего магнитного поля магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, вследствие чего магнетик намагничивается, а его суммарный магнитный момент становится отличным от нуля (см. рис.11.1).

Для характеристики степени намагниченности вещества используют величину , называемую вектором намагничивания (или намагниченности). По определению:

где суммирование производится по всем молекулам, принадлежащим данному объему ΔV

2)

10.. Магнетики — материалы, вступающие во взаимодействие с магнитным полем, выражающееся в его изменении, а также в других физических явлениях — изменение физических размеров, температуры, проводимости, возникновению электрического потенциала и т. д.

К магнитным материалам относят вещества, обладающие определенными магнитными свойствами и используемые в современной технологии. Магнитными материалами могут быть различные сплавы, химические соединения, жидкости.

В основном магнитные материалы делят на две большие группы - Магнитотвёрдые материалы и Магнитомягкие материалы. В то же время в связи с успехом в науках изучающих магнетизм и с развитием большой исследовательской работы в области изучения магнитных материалов, появились новые большие группы магнитных материалов: магнитострикционные материалы, магнитооптические материалы, термомагнитные материалы.

Типы магнетиков.

В отличие от диэлектриков, которые всегда уменьшают напряженность электрического поля, магнетики могут, как уменьшать индукцию внешнего магнитного поля (для этих веществ магнитная восприимчивость отрицательна χ <0, проницаемость меньше единицы μ <1), так ее и увеличивать (для этих веществ χ >0, а μ >1), причем в некоторых случаях весьма значительно (для них μ >>1).

Во всех случаях изменение магнитного поля обусловлено появлением токов намагниченности. Иными словами принцип суперпозиции для магнитного поля остается справедливым: поле внутри магнетика является суперпозицией внешнего поля и поля токов намагничивания i′, которые возникают под действием внешнего поля. Если поле токов намагниченности направлено так же, как и внешнее поле, то индукция суммарного поля будет больше внешнего поля (Рис. 71. а) – в этом случае мы говорим, что вещество усиливает поле; если же поле токов намагниченности направлено противоположно внешнему полю, то суммарное поле будет меньше внешнего поля (Рис. 71.б) – именно в этом смысле мы говорим, что вещество ослабляет магнитное поле.

Рассмотрим кратко основные классы магнетиков и механизмы их намагничивания. Дадим краткую характеристику каждого типа магнетика.

Диамагнетики – вещества, характеризуемые отрицательным значением магнитной восприимчивости χ. Вследствие этого вектор намагничивания в этих веществах направлен противоположно внешнему намагничивающему полю . Диамагнетиками являются, например, вода (χ = - 9∙10-6), серебро (χ = - 2,6∙10-5), висмут (χ = - 1,7∙10-4).

Парамагнетики – характеризуются положительным значение χ , ведут они себя подобно диэлектрикам с диэлектрической проницаемостью ε>1, то есть вектор в этих веществах параллелен намагничивающему полю . К парамагнетикам относятся алюминий (χ = 2,1∙10-6), платина (χ = 3∙10-4), хлористое железо (χ = 2,5∙10-3).

Ферромагнетики – особый вид магнетиков, отличающийся от других магнетиков следующими характерными признаками: 1) высоким значением магнитной восприимчивости (см. таблицу); 2) зависимостью магнитной проницаемости μ от напряженности магнитного поля, вследствие чего зависимость от для этих веществ является нелинейной; 3) наличием петли гистерезиса на кривой намагничивания; 4) существованием температуры, называемой точкой Кюри, выше которой ферромагнетик ведет себя как обычный парамагнетик. Из чистых металлов ферромагнетиками являются железо, никель, кобальт, а также некоторые редкоземельные металлы (например, гадолиний). К числу ферромагнетиков относятся сплавы и соединения этих металлов, а также сплавы и соединения марганца и хрома с неферромагнитными элементами (например, MnAlCu, CrTe и другие).

Ферримагнетики (ферриты) – вещества, в которых магнитные моменты атомов кристаллической решетки образуют несколько магнитных подрешеток с магнитными моментами, направленными навстречу друг другу. Имея меньшую величину магнитной восприимчивости по сравнению с ферромагнетиками, в остальном ферримагнетики характеризуются теми же признаками, что и ферромагнетики. Типичными ферритами являются соединения оксидов железа с оксидами других металлов.

Намагниченное вещество создает магнитное поле которое накладывается на внешнее поле (поле в вакууме). Оба поля в сумме дают результирующее магнитное поле с индукцией причем под здесь и далее подразумевается макроскопическое (усредненное по физически бесконечно малому объему вещества) поле.

В силу замкнутости силовых линий полей и поток результирующего поля через произвольную замкнутую поверхность S равен нулю: Таким образом, теорема Гаусса в применении к магнетикам имеет такой же вид, как и в вакууме.

Обратимся теперь к циркуляции вектора по замкнутому контуру. Согласно теореме о циркуляции магнитного поля: где под следует понимать теперь сумму как макроскопических, так и молекулярных токов, то есть Сумма всех молекулярных токов, охваченных контуром интегрирования, есть: Следовательно, можем написать: Величину, стоящую в круглых скобках под знаком интеграла, обозначают буквой и называют напряженностью магнитного поля:

.

Теперь мы можем записать теорему о циркуляции магнитного поля как: где под понимается введенная выше величина, характеризующая напряженность магнитного поля в веществе.

Согласно написанному равенству, циркуляция вектора напряженности магнитного поля по некоторому замкнутому контуру равна алгебраической сумме макроскопических токов, охваченных этим контуром.

Из сказанного следует, что вектор является аналогом вектора электрической индукции Первоначально предполагалось, что в природе имеются подобные электрическим зарядам «магнитные заряды», и учение о магнетизме развивалось по аналогии с учением об электричестве. Тогда же были введены названия «электрическая индукция» для и «магнитная индукция» для Позже, однако, выяснилось, что в природе «магнитных зарядов» нет и в действительности магнитная индукция является аналогом не а напряженности электрического поля соответственно напряженность магнитного поля – аналогом индукции электрического поля .

11. При решении задач электродинамики, учитывается, что все макроскопические тела ограничены поверхностями. При переходе через эти поверхности физические свойства макроскопических тел изменяются скачком и поэтому также скачком могут изменяться электромагнитные поля, создаваемые этими телами. Другими словами векторные функции и являются кусочно-непрерывными функциями координат, т.е. они непрерывны вместе со своими производными внутри каждой однородной области, но могут претерпевать разрывы на границах раздела двух сред. В связи с этим представляется удобным решать уравнения Максвелла в каждой области, ограниченной некоторой поверхностью раздела отдельно, а затем полученные решения объединять с помощью граничных условий.

При нахождении граничных условий удобно исходить из интегральной формы уравнений аксвелла. Согласно уравнению (4) и теореме Остроградского-Гаусса: (16) где Q – полный заряд внутри объёма интегрирования.

Рассмотрим бесконечно малый объём в виде цилиндра с высотой h и площадью основания S, расположенный в средах 1 и 2 (17) здесь нормаль к границе раздела двух сред, направленная из среды 2 в среду 1. Знак «минус» во втором слагаемом обусловлен тем, что внешняя нормаль поверхности интег в среде 1. Пусть основание цилиндра стремится к границе раздела двух сред. Так как площадь боковой стремится к нулю, торирования в среде 2 направлена противоположно нормали и поэтому приобретёт вид: (18) где и значения нормальных составляющих вектора по разные стороны поверхности раздела; поверхностная плотность зарядов, избыточных по отношению к связанным зарядам самого вещества. Если поверхность раздела не заряжена, то в формуле (18) необходимо положить = 0 Пользоваться понятием поверхностной плотности удобно тогда, когда избыточные (сторонние) заряды расположены в очень тонком слое вещества d, а поле рассматривается на расстояниях от поверхности r>>d. Тогда из определения объёмной плотности заряда следует: = d= Если учесть, что - поверхностная плотность поляризационных зарядов, то формулу (18) можно записать в виде: где а величина которая входит в граничное условие (18), есть поверхностная плотность зарядов, избыточных по отношению к связанным зарядам самого вещества.

Используя уравнение (2) и проводя аналогичные рассуждения, получаем граничное условие для вектора (19) Выражения (18) и (19) – граничные условия для нормальных составляющих векторов и Чтобы получить условия для тангенциальных составляющих можно использовать уравнения (1) и (3). Умножим уравнение (3) скалярно на положительную нормаль к поверхности S, ограниченной контуром L, имеющим вид прямоугольника (рис. 3).

15. Как известно, электрические токи создают вокруг себя магнитное поле. Связь магнитного поля с током привела к многочисленным попыткам возбудить ток в контуре с помощью магнитного поля. Эта фундаментальная задача была блестяще решена в 1831 году английским физиком М.Фарадеем, открывшим явление электромагнитной индукции. Оно заключается в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного. Вот примеры классических опытов Фарадея с помощью которых было обнаружено явление электромагнитной индукции.

Обобщая результаты своих многочисленных опытов, Фарадей пришел к выводу, что индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции. Например, при повороте в одноименном магнитном поле замкнутого проводящего контура в нем также возникает индукционный ток. В данном случае индукция магнитного поля вблизи проводника остается постоянной, а меняется только поток магнитной индукции сквозь контур.

Опытным путем также было установлено, что значение индукционного тока совершенно не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения.

Открытие явления электромагнитной индукции имело большое значение, так как была доказана возможность получения электрического тока с помощью магнитного поля. Этим была установлена взаимосвязь между электрическими и магнитными явлениями, что послужило в дальнейшем толчком для разработки теории электромагнитного поля.

Анализируя результаты, полученные опытным путем, Фарадей пришел к количественному закону электромагнитной индукции. Он показал, что всякий раз, когда происходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток; возникновение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электромагнитной индукции. Значение индукционного тока, а, следовательно, и э.д.с. электромагнитной индукции определяется только скоростью изменения магнитного потока, т.е. Теперь необходимо выяснить знак E. Вообще, знак магнитного потока зависит от выбора положительной нормали к контуру. В свою очередь, положительное направление нормали определяется правилом правого винта. Следовательно, выбирая положительное направление нормали, мы определяем как знак потока магнитной индукции, так и направление тока и э.д.с. в контуре.

Пользуясь этими представлениями и выводами, можно соответственно прийти к формулировке закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватываемого замкнутым проводящим контуром, возникающая в контуре э.д.с

Знак минус показывает, что увеличение потока (dФ/dt>0) вызывает э.д.с E < 0, т.е. поле индукционного тока направленно навстречу потоку; уменьшение потока (dФ/dt<0) вызывает E > 0, т.е. направление потока и поля индукционного тока совпадают. Знак минус в формуле правилом Ленца - общим правилом для нахождения направления индукционного тока, выведенного в 1833 г.

Закон Фарадея можно сформулировать еще таким образом: э.д.с. электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром.

Этот закон является универсальным: э.д.с. не зависит от способа изменения магнитного потока.

Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим

Какова природа э.д.с. электромагнитной индукции? Если проводник (подвижная перемычка контура рис. 3) движется в постоянном магнитном поле, то сила Лоренца, действующая на заряды внутри проводника, движущиеся вместе с проводником, будет направлена противоположно току, т.е. она будет создавать в проводнике индукционный ток противоположного направления (за направление электрического тока принимается движение положительных зарядов).

Таким образом, возбуждение э.д.с. индукции при движении контура в постоянном магнитном поле объясняется действием силы Лоренца, возникающей при движении проводника. Согласно закону Фарадея, возникновение э.д.с. электромагнитной индукции возможно и в случае неподвижного контура, находящемся в переменном магнитном поле. Однако сила Лоренца на неподвижные заряды не действует, поэтому в данном случае ею нельзя объяснить возникновение э.д.с. индукции.

Максвел для объяснения э.д.с. индукции в неподвижных проводниках предложил, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция вектора ЕВ этого поля по любому неподвижному контуру L проводника представляет собой э.д.с. электромагнитной индукции:

42. Классическая электронная теория металлов представляет твердый проводник в виде системы, состоящей из узлов кристаллической ионной решетки, внутри которой находится электронный газ из коллективизированных (свободных) электронов. В свободное состояние от каждого атома металла переходит от одного до двух электронов. К электронному газу применялись представления и законы статистики обычных газов. При изучении хаотического (теплового) и направленного под действием силы электрического поля движения электронов был выведен закон Ома. При столкновениях электронов сузлами кристаллической решетки энергия, накопленная при ускорении электронов в электрическом поле, передается металлической основе проводчика, вследствие чегоон нагревается. Рассмотрение этого вопроса привело к выводу закона Джоуля—Ленца.Таким образом, электронная теория металлов дала возможность аналитически описать и объяснить найденные ранее экспериментальным путем основные законы электропроводности и потерь электрической энергии в металлах. Оказалось возможным также объяснить и связь между электропроводностью и теплопроводностью металлов. Кроме того, некоторые опыты подтвердили гипотезу об электронном газев металлах, а именно.1. При длительном пропускании электрического тока через цепь,состоящую из одних металлических проводников, не наблюдается проникновенияатомов одного металла в другой2. При нагреве металлов до высоких температур скорость тепловогодвижения свободных электронов увеличивается, и наиболее быстрые из них могутвылетать из металла, преодолевая силы поверхностного потенциального барьера3. В момент неожиданной остановки быстро двигавшегося проводникапроисходит смещение электронного газа по закону инерции в направлении движения.Смещение электронов приводит к появлению разности потенциалов на концахзаторможенного проводника, и стрелка подключаемого к ним измерительного прибораотклоняется по шкале >4. Исследуя поведение металлических проводников в магнитномполе, установили, что вследствие искривления траектории электронов вметаллической пластинке, помещенной в поперечное магнитное поле, появляетсяпоперечная ЭДС и изменяется электрическое сопротивление проводника.Однако выявились и противоречиянекоторых выводов теории с опытными данными. Они состояли в расхождениитемпературной зависимости удельного сопротивления, наблюдаемой на опыте ивытекающей из положений теории; в несоответствии теоретически полученных значенийтеплоемкости металлов опытным данным. Наблюдаемая теплоемкость металлов меньшетеоретической и такова, как будто электронный газ не поглощает теплоту принагреве металлического проводника. Эти противоречия удалось преодолеть,рассматривая некоторые положения с позиций квантовой механики. В отличие отклассической электронной теории в квантовой механике принимается, чтоэлектронный газ в металлах при обычных температурах находится в состояниивырождения. В этом состоянии энергия электронного газа почти не зависит оттемпературы, т. е. тепловое движение почти не изменяет энергию электронов.Поэтому на нагрев электронного газа теплота не затрачивается, что иобнаруживается при измерении теплоемкости металлов. В состояние, аналогичноеобычным газам, электронный газ приходит при температуре порядка тысячКельвинов. Представляя металл как систему, в которой положительные ионыскрепляются посредством свободно движущихсяэлектронов, легко понять природу всех основных свойств металлов:пластичности, ковкости, хорошей теплопроводности и высокой электропроводности.

17. Немецкий физик Г. Ом (1787 -1854) экспериментально установил, что сипа тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорционально напряжению U на концах проводника:

I = U/R, (1)

где R - электрическое сопротивление проводника.

Уравнение (1) выражает закон Ома для участка цепи (не содержащего источника тока): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорционально сопротивлению проводника.

Участок цепи, в котором не действуют э.д.с. (сторонние силы) называют однородным участком цепи, поэтому эта формулировка закона Ома справедлива для однородного участка цепи.

Теперь рассмотрим неоднородный участок цепи, где действующую э.д.с. на участке 1 - 2 обозначим через Ε12, а приложенную на концах участка разность потенциалов - через φ1 - φ2.

Если ток проходит по неподвижным проводникам, образующим участок 1-2, то работа A12 всех сил (сторонних и электростатических), совершаемая над носителями тока, по закону сохранения и превращения энергии равна теплоте, выделяющейся на участке. Работа сил, совершаемая при перемещении заряда Q0 на участке 1- 2:

A12 = Q0E12 + Q0(φ1 - φ2) (2)

Э.д.с. E12, как и сила тока I, - величина скалярная. Её необходимо брать либо с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если е.д.с. способствует движению положительных зарядов в выбранном направлении (в направлении 1-2), то E12 > 0. Если э.д.с. препятствует движению положительных зарядов в данном направлении, то E12 < 0.

За время t в проводнике выделяется теплота:

Q =I2Rt = IR(It) = IRQ0 (3)

Из формул (2) и (3) получим:

IR = (φ1 - φ2) + E12 (4)

Откуда

I = (φ1 - φ2 + E12)/R (5)

Выражение ,(4) или (5) представляет собой закон Ома для неоднородного участка цепи в интегральной форме, который является обобщённым законом Ома.

Если на данном участке цепи источник тока отсутствует (E12 = 0), то из (5) приходим к закону Ома для однородного участка цепи

I = (φ1 - φ2)/R = U / R

Если же электрическая цепь замкнута, то выбранные точки 1 и 2 совпадают, φ1 = φ2; тогда из (5) получаем закон Ома для замкнутой цепи:

I =E /R,

где E - э.д.с., действующая в цепи, R - суммарное сопротивление всей цепи. В общем случае R = r + R1, где r - внутреннее сопротивление источника тока, R1 - сопротивление внешней цепи. Поэтому закон Ома для замкнутой цепи будет иметь вид:

I = E / (r+R1).

Если цепь разомкнута, в ней ток отсутствует (I = 0), то из закона Ома (4) получим, что (φ1 - φ2) = E12 , т.е. э.д.с., действующая в разомкнутой цепи, равна разности потенциалов на её концах. Следовательно, для того чтобы найти э.д.с. источника тока, надо измерить разность потенциалов на его клеммах при разомкнутой цепи.

23. РАЗНОСТЬ ХОДА лучей (в оптике) - разность оптических длин путей двух световых лучей, имеющих общие начальную и конечную точки.

Оптическая длина пути

Оптическая длина пути, оптический путь, между точками А и В прозрачной среды; расстояние, на которое свет (оптическое излучение) распространился бы в вакууме за время его прохождения от А до В. Поскольку скорость света в любой среде меньше его скорости в вакууме, О. д. п. всегда больше реально проходимого светом расстояния (или, в предельном случае вакуума, равна ему). В оптической системе, состоящей из р однородных сред (траектория луча света в такой системе — ломаная линия), О. д. п. равна , , где lk — расстояние, пройденное светом в k-той среде (k = 1, 2,..., р), nk — показатель преломления этой среды, å — знак суммы. Для одной среды (р = 1) сумма сокращается до единственного члена ln . В оптически неоднородной среде (с плавно меняющимся n; траектория луча в такой среде — кривая линия), О. д. п. есть , где dl — бесконечно малый элемент траектории луча. Понятие О. д. п. играет большую роль в оптике, особенно в геометрической оптике и кристаллооптике, позволяя сопоставлять пути, проходимые светом в средах, в которых скорость его распространения различна. Геометрическое место точек, для которых О. д. п., отсчитываемая от одного источника, одинакова, называется поверхностью световой волны; световые колебания на этой поверхности находятся в одинаковой фазе.