Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
atch_exam_1-8.docx
Скачиваний:
3
Добавлен:
04.08.2019
Размер:
166.68 Кб
Скачать

7)Теорема Безу

Остаток r при делении многочлена f (x) на двучлен

(x − c) равен f (c).

Доказательство

Поделим с остатком многочлен P(x) на многочлен x − a:

P(x) = (x − a)Q(x) + R(x).

Так как deg R(x) < deg(x − a) = 1, то R(x) — многочлен степени не выше 0. Подставляя x = a, поскольку (a − a)Q(a) = 0, имеем P(a) = R(a).

Следствия

Число a является корнем многочлена p(x) тогда и только тогда, когда p(x) делится без остатка на двучлен x − a (отсюда, в частности, следует, что множество корней многочленаP(x) тождественно множеству корней соответствующего уравнения P(x) = 0).

Свободный член многочлена делится на любой целый корень многочлена с целыми коэффициентами (если старший коэффициент равен 1, то все рациональные корни являются и целыми).

Пусть α — целый корень приведённого многочлена A(x) с целыми коэффициентами. Тогда для любого целого k число A(k) делится на α-k.

3) Комплексная плоскость. Модуль и аргумент. Сопряженное к комплексному числу. Тригонометрическая форма комплексного числа. Геометрическая модель

Геометрическое представление комплексного числа

Рассмотрим плоскость с прямоугольной системой координат. Каждому комплексному числу   сопоставим точку плоскости с координатами {x,y} (а также радиус-вектор, соединяющий начало координат с этой точкой). Такая плоскость называется комплексной. Вещественные числа на ней занимают горизонтальную ось, мнимая единица изображается единицей на вертикальной оси; по этой причине горизонтальная и вертикальная оси называются соответственно вещественной и мнимой осями.

Модуль и аргумент

Модулем (абсолютной величиной) комплексного числа называется длина радиус-вектора соответствующей точки комплексной плоскости (или, что то же, расстояние между точкой комплексной плоскости, соответствующей этому числу, и началом координат).

Модуль комплексного числа z обозначается | z | и определяется выражением  . Часто обозначается буквами   или  . Если zявляется вещественным числом, то | z | совпадает с абсолютной величиной этого вещественного числа.

Для любых   имеют место следующие свойства модуля. :

1)  , причём   тогда и только тогда, когда  ;;

2)   (неравенство треугольника);

3)  ;

4)  .

Из третьего свойства следует  , где  . Данное свойство модуля вместе с первыми двумя свойствами вводят на множестве комплексных чисел структуру двумерного нормированного пространства над полем  .

5) Для пары комплексных чисел z1 и z2 модуль их разности | z1 − z2 | равен расстоянию между соответствующими точками комплексной плоскости.

Угол   (в радианах) радиус-вектора точки, соответствующей числу z, называется аргументом числа z и обозначается  .

Из этого определения следует, что  .

Для комплексного нуля значение аргумента не определено, для ненулевого числа z аргумент определяется с точностью до 2kπ, где k — любое целое число.

Главным значением аргумента называется такое значение  , что  . Часто главное значение обозначается  [4]. Главное значение аргумента обратного числа отличается знаком от

аргумента исходного: 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]