Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВВС.docx
Скачиваний:
10
Добавлен:
06.08.2019
Размер:
866.99 Кб
Скачать

1939—1945: Вторая мировая война

См. также: Список самолётов Второй мировой войны

Вторая мировая война привела к необходимости резкого увеличения темпов усовершенствования самолёта и производства. Все страны, вовлеченные в войну разрабатывали, модернизировали и производили самолёты и авиационное вооружение, при этом появились новые типы самолётов, например, дальние бомбардировщики. Эскорты истребителей стали необходимы для успеха тяжёлых бомбардировщиков, значительно снижая потери в борьбе против вражеских истребителей.

B-29 Superfortress, тяжёлый бомбардировщик

Первым практически применённым реактивным самолётом стал Heinkel He 178 (Германия), совершивший первый полёт в 1939 (Coanda-1910 по сообщением совершил первый короткий непреднамеренный полёт 16 декабря 1910). Первая крылатая ракета (Фау-1), первая баллистическая ракета (Фау-2) и первая управляемая ракета Bachem Ba 349 были также разработаны в Германии. Тем не менее, применение реактивных истребителей было ограничено из-за их небольшого количества (что также было отягощено нехваткой пилотов и топлива в конце войны), Фау-1 был недостаточно эффективен в связи с медленной скоростью и уязвимостью, Фау-2 был недостаточно точен для поражения военных целей, хотя был эффективен при бомбардировке городов.

Следующая таблица показывает как количество произведенных самолётов в США значительно увеличилось к концу войны.Тип 1940 1941 1942 1943 1944 1945 Total

Сверхтяжёлые бомбардировщики 0 0 4 91 1,147 2,657 3,899

Тяжёлые бомбардировщики 19 181 2,241 8,695 3,681 27,874 42,691

Средние бомбардировщики 24 326 2,429 3,989 3,636 1,432 11,836

Лёгкие бомбардировщики 16 373 1,153 2,247 2,276 1,720 7,785

Истребители 187 1,727 5,213 11,766 18,291 10,591 47,775

Разведывательные самолёты 10 165 195 320 241 285 1,216

Грузовые самолёты 5 133 1,264 5,072 6,430 3,043 15,947

Учебные самолёты 948 5,585 11,004 11,246 4,861 825 34,469

Самолёты связи 0 233 2,945 2,463 1,608 2,020 9,269

Итого за год 1,209 8,723 26,448 45,889 51,547 26,254 160,070

Классификация летательных аппаратовпо взлётной массе по диапазону скоростей по маневренным возможностям АОН

Классификация летательных аппаратов по взлётной массе

Все современные летательные аппараты группируются по классам в зависимости от величины их взлётной массы, целевого назначения, маневренных возможностей и дальности полёта.

Летательные аппараты гражданской авиации в зависимости от максимальной взлётной массы подразделяются на четыре класса:

Класс Самолёты Вертолёты

1 более 75 тонн более 10 тонн

2 30 - 75 тонн 5 - 10 тонн

3 10 - 30 тонн 2 - 5 тонн

4 менее 10 тонн менее 2 тонн

По дальности полёта самолёты подразделяются на:

магистральные дальние - более 6000 км;

средние магистральные - от 2500 до 6000 км;

ближние магистральные - от 1000 до 2500 км;

самолёты МВЛ - менее 1000 км.

Классификация летательных аппаратов по диапазонам скоростей

Категория ВС Диапазон скоростей, км/ч Типы ВС

"А" Менее 169 Ан-2, Ил-103,Л-410, Як-18Т, Як-52, Су-26, Су-29, Су-31, все типы вертолетов

"B" 170 - 223 Л-39, Як-40, Як-42, Ан-24, Ан-26, Ан-30, Ан-72, Ан-74, Ан-140, Ил-114

"C" 224 - 260 Ан-32, Ту-134

"D" 261 - 306 Ил-18, Ан-12

- планер;

- самолет;

- самолет вертикального взлета и посадки;

- самолет укороченного взлета и посадки;

- самолет-буксировщик;

- дирижабль;

- вертолет;

- система ракетно-космическая;

- ракета-носитель;

- самолет-разгонщик;

- аппарат спускаемый;

- самолет орбитальный;

- аппарат воздушно-космический многоразовый;

- корабль космический транспортный многоразовый;

- ракетоплан.

Классификация

Классификаций летательных аппаратов основывают на разных принципах. Далее не рассматриваются классификации, например, по типу используемого двигателя, или по назначению ЛА, которые по существу не являются классификациями собственно летательных аппаратов, а в действительности классифицируют двигатели, или полезную нагрузку летательных аппаратов, которая может относиться практически к любой отрасли техники, науки и хозяйственной деятельности. Не рассматриваются также и вырожденные классификации (состоящие всего из двух подразделений, например, пилотируемые — беспилотные).

Здесь представлена классификация летательных аппаратов по техническому способу выполнения полёта — перемещения в пространстве без непосредственной опоры на твёрдые тела или на жидкую среду. [5] По этому способу летательные аппараты подразделяются на:

1. Аппараты, движущиеся в гравитационном поле Земли[6], в полёте преодолевающие силу её тяготения. По способу создания силы, уравновешивающей силу тяготения эти аппараты подразделяются на:

1.1. Аэростатические, или аппараты «легче воздуха», поднимаемые в атмосферный полёт архимедовой силой за счёт баллона (оболочки), наполненного газом (в том числе, нагретым воздухом), плотность которого ниже плотности атмосферного воздуха, или применением вакуумированной оболочки (Вакуумный дирижабль). По способу передвижения эти аппараты подразделяются на:

1.1.1. Аэростаты, не имеющие средств целенаправленного передвижения в горизонтальной плоскости и перемещающиеся в ней по ветру.

1.1.2. Дирижабли, имеющие двигатель (двигатели) и средства управления для целенаправленного передвижения по вертикали (вверх или вниз) и в горизонтальной плоскости.

1.2. Аэродинамические — аппараты, поддерживаемые в атмосферном полёте аэродинамической подъёмной силой, возникающей за счёт быстрого движения в воздухе самого аппарата или его частей. Подразделяются на:

1.2.1. Моторные, приводимые в движение двигателем. Подразделяются на:

1.2.1.1. Аппараты с активным управлением течения пограничного слоя, такие как ЭКИП, с вихревой системой управления течением в пограничном слое.

1.2.1.2. Аппараты с неуправляемым течением пограничного слоя

1.2.1.2.1. Вертолёты (геликоптеры), подъёмная сила которых создаётся воздушным винтом, вращаемым двигателем вокруг вертикальной оси.

1.2.1.2.2. Крылатые аппараты, подъёмная сила которых создаётся за счёт ненулевого аэродинамического качества аппарата при его движении в атмосфере. Подразделяются на:

1.2.1.2.2.1. Крылатые аппараты с неподвижным (относительно аппарата) крылом: самолёты[7], крылатые ракеты[8], экранолёты, экранопланы, мотодельтапланы, парамоторы.

1.2.1.2.2.2. Крылатые аппараты, с подвижным крылом. К ним относятся:

1.2.1.2.2.2.1. Автожиры[9], крыло которых свободно вращается вокруг вертикальной оси под воздействием набегающего в горизонтальном полёте воздуха.

1.2.1.2.2.2.2. Махолёты, крыло которых помимо создания подъёмной силы выполняет функцию движителя в горизонтальном полёте.

1.2.1.2.3. Винтокрылы. Аппараты, совмещающие способ (1.2.1.2.1) при отрыве от земли и наборе высоты, подобно вертолётам, со способом как у аппаратов c неподвижным относительно аппарата крылом 1.2.1.2.2.1, в горизонтальном полёте развивающие подъёмную силу крылом, как самолёты, при этом винт, ось которого поворачивается в горизонтальное положение, играет роль движителя в горизонтальном полёте.

1.2.2. Безмоторные аэродинамические аппараты, движущиеся в атмосфере с постепенным снижением[10] под комбинированным воздействием силы тяжести и аэродинамических сил.

1.2.2.1. Планёры, дельтапланы, парапланы.

1.2.2.2. Парашюты.

1.2.2.3. Спускаемые аппараты космических кораблей.

1.3 Самолёты с аэростатической разгрузкой — подобные [1][2][3], у которого около 80 % подъёмной силы самолёта (500 тонн) достигается за счёт баллона с гелием, а скорость до 300 км/ч обеспечивают маршевые двигатели.

1.4. Инерционные. Движущиеся в поле тяготения Земли по инерции за счёт скорости, сообщённой им на активном участке траектории ракетным двигателем. Подразделяются на:

1.4.1. Головные части баллистических ракет[11], движущиеся по баллистическим траекториям.

1.4.2. Искусственные спутники Земли и орбитальные космические станции, движущиеся в космическом пространстве вокруг Земли по замкнутым орбитам.

1.5. Ракетные — аппараты, преодолевающие силу тяготения без взаимодействия с атмосферой, за счёт тяги ракетного двигателя, направленной вертикально вверх, или имеющей достаточную вертикальную составляющую. Такой способ полёта используется на активном участке траектории баллистическими ракетами и ракетами-носителями космических аппаратов.

1.6 Аппараты на воздушной подушке, удерживающиеся над землёй или над водой за счёт повышенного давления воздуха, создаваемого компрессором между днищем аппарата и твёрдой или водной поверхностью.[12]

2. Аппараты свободного полёта, перемещающиеся в космическом пространстве, в отсутствие значительных гравитационных полей планет. К ним относятся межпланетные зонды.

Лобовое сопротивление — сила, препятствующая движению тел в жидкостях и газах. Лобовое сопротивления складывается из двух типов сил: сил касательного (тангенциального) трения, направленных вдоль поверхности тела, и сил давления, направленных по нормали к поверхности. Сила сопротивления является диссипативной силой и всегда направлена против вектора скорости тела в среде. Наряду с подъёмной силой является составляющей полной аэродинамической силы.

Сила лобового сопротивления обычно представляется в виде суммы двух составляющих: сопротивления при нулевой подъёмной силе и индуктивного сопротивления. Каждая составляющая характеризуется своим собственным безразмерным коэффициентом сопротивления и определённой зависимостью от скорости движения.

Лобовое сопротивление может способствовать как обледенению летательных аппаратов (при низких температурах воздуха), так и вызывать нагревание лобовых поверхностей ЛА при сверхзвуковых скоростях ударной ионизацией.Поток и форма препятствия Профильное сопротивление Сопротивление обшивки

0% 100%

~10% ~90%

~90% ~10%

100% 0%

Траектории трёх объектов (угол запуска - 70°, Distance - расстояние, Height - высота). Чёрный объект не испытывает никакого сопротивления и движется по параболе, на голубой объект действует Закон Стокса, на зеленый объект - закон вязкости НьютонаСодержание [убрать]

1 Сопротивление при нулевой подъёмной силе

2 Индуктивное сопротивление

3 Суммарное сопротивление

4 См. также

5 Ссылки

[править]

Сопротивление при нулевой подъёмной силе

Эта составляющая сопротивления не зависит от величины создаваемой подъёмной силы и складывается из профильного сопротивления крыла, сопротивления элементов конструкции самолёта, не вносящих вклад в подъёмную силу, и волнового сопротивления. Последнее является существенным при движении с около- и сверхзвуковой скоростью, и вызвано образованием ударной волны, уносящей значительную долю энергии движения. Волновое сопротивление возникает при достижении самолётом скорости, соответствующей критическому числу Маха, когда часть потока, обтекающего крыло самолёта, приобретает сверхзвуковую скорость. Критическое число М тем больше, чем больше угол стреловидности крыла, чем более заострена передняя кромка крыла и чем оно тоньше.

Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:

Cx0 - безразмерный аэродинамический коэффициент сопротивления, получается из критериев подобия, например, чисел Рейнольдса и Фруда в аэродинамике.

Определение характерной площади зависит от формы тела:

в простейшем случае (шар) — площадь поперечного сечения;

для крыльев и оперения — площадь крыла/оперения в плане;

для пропеллеров и несущих винтов вертолётов — либо площадь лопастей, либо ометаемая площадь винта;

для продолговатых тел вращения ориентированных вдоль потока (фюзеляж, оболочка дирижабля) — приведённая волюметрическая площадь, равная V2/3, где V — объём тела.

Мощность, требуемая для преодоления данной составляющей силы лобового сопротивления, пропорциональна кубу скорости.

[править]

Индуктивное сопротивление

Индуктивное сопротивление (англ. lift-induced drag) — это следствие образования подъёмной силы на крыле конечного размаха. Несимметричное обтекание крыла приводит к тому, что поток воздуха сбегает с крыла под углом к набегающему на крыло потоку (т. н. скос потока). Таким образом, во время движения крыла происходит постоянное ускорение массы набегающего воздуха в направлении, перпендикулярном направлению полёта, и направленном вниз. Это ускорение во-первых сопровождается образованием подъёмной силы, а во-вторых — приводит к необходимости сообщать ускоряющемуся потоку кинетическую энергию. Количество кинетической энергии, необходимое для сообщения потоку скорости, перпендикулярной направлению полёта, и будет определять величину индуктивного сопротивления.

На величину индуктивного сопротивления оказывает влияние не только величина подъёмной силы, но и её распределение по размаху крыла. Минимальное значение индуктивного сопротивления достигается при эллиптическом распределении подъёмной силы по размаху. При проектировании крыла этого добиваются следующими методами:

выбором рациональной формы крыла в плане;

применением геометрической и аэродинамической крутки;

установкой вспомогательных поверхностей — вертикальных законцовок крыла.

Индуктивное сопротивление пропорционально квадрату подъёмной силы Y, и обратно пропорционально площади крыла S, его удлинению λ, плотности среды ρ и квадрату скорости V:

Таким образом, индуктивное сопротивление вносит существенный вклад при полёте на малой скорости (и, как следствие, на больших углах атаки). Оно также увеличивается при увеличении веса самолёта.

[править]

Суммарное сопротивление

Является суммой всех видов сил сопротивления:

X = X0 + Xi

Так как сопротивление при нулевой подъёмной силе X0 пропорционально квадрату скорости, а индуктивное Xi — обратно пропорционально квадрату скорости, то они вносят разный вклад при разных скоростях. С ростом скорости, X0 растёт, а Xi — падает, и график зависимости суммарного сопротивления X от скорости («кривая потребной тяги») имеет минимум в точке пересечения кривых X0 и Xi, при которой обе силы сопротивления равны по величине. При этой скорости самолёт обладает наименьшим сопротивлением при заданной подъёмной силе (равной весу), а значит наивысшим аэродинамическим качеством.

Мощность, требуемая для преодоления силы паразитного сопротивления, пропорциональна кубу скорости, а мощность, требуемая для преодоления индуктивного сопротивления, обратно-пропорциональна скорости, поэтому суммарная мощность тоже имеет нелинейную зависимость от скорости. При некоторой скорости мощность (а значит и расход топлива) становится минимальной — это скорость наибольшей продолжительности полёта (барражирования). Скорость, при которой достигается минимум отношения мощности (расхода топлива) к скорости полёта, является скоростью максимальной дальности полёта или крейсерской скоростью.

ГОРИЗОНТАЛЬНЫЙ ПОЛЕТ САМОЛЕТА

Полет самолета от взлета до посадки представляет собой сочетание различных видов движения. Наиболее продолжительным видом движения является прямолинейный полет. Установившимся прямолинейным полетом называется такое движение самолета, при котором скорость движения с течением времени не изменяется по величине и направлению.

К установившемуся прямолинейному полету относятся горизонтальный полет, подъем и снижение самолета (планирование).

Установившимся горизонтальным полетом называется прямолинейный полет с постоянной скоростью без набора высоты или снижения.

На схеме показаны силы, действующие на самолет в горизонтальном полете без скольжения, где:

Y - подъемная сила;

Х - лобовое сопротивление;

G - вес самолета;

Р - сила тяги двигателя.

Все эти силы необходимо считать приложенными к центру тяжести самолета, так как его прямолинейный полет возможен лишь при условии, что сумма моментов всех сил относительно центра тяжести равна нулю.

Необходимое равновесие моментов летчик создает соответствующим отклонением рулей управления.

Из рисунка видно, что вес самолета G уравновешивает подъемная сила самолета Y, а лобовое сопротивление Х - сила тяги Р.

Для установившегося горизонтального полета необходимы два условия:

Y-G=0 (условие постоянства высоты H=const); (4.1)

Р-Х=0 (условие постоянства скорости V=const). (4.2)

Эти равенства называются уравнениями движения для установившегося горизонтального полета. При нарушении этих равенств движение самолета станет криволинейным и неравномерным.

Пользуясь этими равенствами, можно определить скорость, коэффициент подъемной силы, тягу и мощность, потребные для горизонтального полета.

Рис. 1 Схема действующих сил на самолет в установившемся полете

СКОРОСТЬ, ПОТРЕБНАЯ ДЛЯ ГОРИЗОНТАЛЬНОГО ПОЛЕТА

Для того чтобы крыло самолета могло создать подъемную силу, равную весу самолета, нужно, чтобы оно двигалось с определенной скоростью относительно воздушных масс.

Скорость, необходимая для создания подъемной силы, равной весу самолета при полете самолета на данном угле атаки и данной высоте полета, называется потребной скоростью горизонтального полета.

По определению горизонтального полета должно быть выполнено условие Y=G.

Известно, что

(4.3)

следовательно,

(4.4)

Решив это уравнение, найдем скорость, потребную для выполнения горизонтального полета

(4.5)

Величина потребной скорости зависит от веса самолета, площади его крыла, от высоты полета (выраженной через массовую плотность r) и коэффициента подъемной силы Су.

Из формулы (4.5) видно, что с увеличением веса самолета скорость, потребная для горизонтального полета, также увеличивается, так как для уравновешивания большего веса требуется большая подъемная сила, что достигается (при прочих равных условиях) увеличением скорости полета (см. формулу 6.4). Увеличение площади крыла, наоборот, уменьшает потребную скорость. Для расчетов на практике обычно применяют отношение называемое удельной нагрузкой на крыло.

(4.6)

У современных самолетов удельная нагрузка на крыло колеблется в широких пределах: от 100 кг/м2 у легких самолетов до 800 кг/м2 и более у тяжелых самолетов и самолетов больших скоростей полета.

С увеличением высоты полета массовая плотность воздуха уменьшается. Согласно формуле (6.5) уменьшение плотности r приводит к увеличению потребной скорости полета.

Если изменять угол атаки, то пропорционально будет изменяться и коэффициент подъемной силы Су. А изменение Су отражается на величине потребной скорости горизонтального полета. Чем меньше Су (и угол атаки соответственно), тем больше должна быть скорость полета, и наоборот. Из этого следует важный вывод: каждому углу атаки на данной высоте полета соответствует вполне определенная скорость горизонтального полета VГ.П.

ТЯГА И МОЩНОСТЬ, ПОТРЕБНЫЕ ДЛЯ ГОРИЗОНТАЛЬНОГО ПОЛЕТА

Потребной тягой для горизонтального полета называется тяга, необходимая для установившегося горизонтального полета, т. е. для уравновешивания лобового сопротивления самолета на данном угле атаки (Рп=Х).

В горизонтальном полете подъемная сила равна весу самолета Y=G, тогда, разделив первое равенство на второе, получим

(4.7)

Формула показывает, что чем меньше вес самолета и чем больше его качество К, тем меньшая тяга потребуется для горизонтального полета. Но качество самолета зависит от угла атаки, следовательно, при изменении угла атаки меняется и потребная тяга. Поэтому для определения потребной тяги при заданном угле атаки необходимо предварительно найти соответствующее ей качество самолета.

Чтобы найти зависимость Рп от VГ П. подставим в формулу (4.7) развернутое выражение подъемной силы, получим Из формулы видно, что потребная тяга горизонтального полета зависит от квадрата скорости.

На Рис. 2 приведены кривые зависимости Рп от VГП скорости полета на высоте Н=500 м для самолетов Як-52 и Як-55.

Рис. 2 Кривые потребных тяг для горизонтального полета самолетов Як-52 и Як-55

Задача 1. Определить тягу, потребную для горизонтального полета «самолета Як-55 при угле атаки 5° и полетном весе 870 кгс

Решение. По поляре самолета Як-55 находим, что при угле атаки 5° коэффициенты имеют значения. Су=0,39, Сх=0,045, следовательно, качество равно

Тогда потребная тяга будет иметь значение

Задача 2. Определить тягу, потребную для горизонтального полета •самолета Як-52 при угле атаки 7° и полетном весе 1290 кгс

Решение. На поляре самолета Як-52 находим, что при угле атаки 7° коэффициенты равны. Су =0,67, Сх= 0,056, следовательно,

Тогда потребная тяга будет равна

В задачах не указана высота полета, так как высота при равных углах атаки и отсутствии сжимаемости воздуха не влияет на потребную тягу.

Качество самолета зависит только от величины коэффициентов Су и Сх, а на них высота полета на скоростях до 700 км/ч не влияет. Таким образом, для самолетов Як-52 и Як-55 можно считать, что потребная тяга от высоты не зависит.

Потребная мощность. Для горизонтального полета потребной мощностью называется мощность, необходимая для обеспечения установившегося горизонтального полета на данном угле атаки и обозначается NП.

Если при полете со скоростью VГП требуется тяга РП, то потребная мощность определяется по формуле

(4.8)

Эта формула показывает, что потребная мощность зависит от тех же факторов, от которых зависят потребная тяга и скорость полета. Подставив в формулу (4.8) вместо РП и VГП их развернутые выражения, получим развернутую формулу потребной мощности

(4.9)

Из формулы видно, что потребная мощность зависит: от высоты полета самолета (плотность воздуха); от веса самолета и удельной нагрузки на крыло; от аэродинамического качества самолета и коэффициента подъемной силы.

Следовательно, потребная мощность тем больше, чем больше вес самолета, меньше плотность воздуха и хуже качество самолета.

При условии G=const и H=const потребная мощность зависит только от угла атаки и, как следствие, от скорости полета.

В горизонтальном полете потребная тяга равна лобовому сопротивлению РП=Х, тогда формула потребной мощности будет иметь следующий вид:

(4.10)

Если в формулу подставить развернутое выражение лобового сопротивления, то получим

(4.11)

Формула показывает, что мощность, потребная для горизонтального полета, пропорциональна кубу скорости (потребная тяга пропорциональна квадрату скорости). На Ошибка! Неизвестный аргумент ключа. приводятся кривые зависимости Nп от V, скорости полета на высотах Н=500 м и Н=1000 м для самолетов Як-52 и Як-55.

Таким образом, чтобы увеличить скорость полета в 2 раза, мощность необходимо увеличить в 8 раз.

Рис. 3 Кривые мощностей, потребных для горизонтального полета

Задача. Определить мощность, потребную для горизонтального полета у земли, если вес самолета Як-52 G=1200 кгс, коэффициенты Су =0,4 и Сх=0,044, S=15 м2.

Решение. 1. Определим скорость полета

Решение. 2. Качество самолета

Решение. 3 Потребная тяга

Решение. 4. Потребная мощность

ЗАВИСИМОСТЬ ПОТРЕБНОЙ ТЯГИ И МОЩНОСТИ ДЛЯ ГОРИЗОНТАЛЬНОГО ПОЛЕТА ОТ СКОРОСТИ ГОРИЗОНТАЛЬНОГО ПОЛЕТА. КРИВЫЕ Н. Е. ЖУКОВСКОГО

Для полной характеристики горизонтального полета и определения летных данных самолетов воспользуемся графоаналитическим методом, предложенным Н.Е.Жуковским. Наложим на кривые потребных тяг и мощностей РП и NП кривые располагаемых тяг и мощностей РР и NР. Полученные таким образом кривые носят название кривых потребных и располагаемых тяг и мощностей, или кривых Н.Е.Жуковского (Рис. 4, Рис. 5).

Рис. 4 Кривые располагаемых и потребных тяг самолетов Як-52 и Як-55 (кривые Н. Е. Жуковского)

Рис. 5 Кривые располагаемых и потребных мощностей самолетов Як-52 и Як-55 (кривые Н. Е. Жуковского)

На рисунках приведены кривые РП, NП, PР и NР самолетов Як-52 и Як-55 (Н=500 м и Н=1000 м).

Располагаемой тягой (мощностью) принято называть наибольшую тягу (мощность), которую может развить силовая установка на данной высоте и скорости полета Располагаемая тяга зависит от высоты, поэтому кривую необходимо брать для той высоты, на которой задано определить летные качества самолета

Точка пересечения кривых соответствует полету с наименьшим возможным в горизонтальном полете углом атаки, то есть полету на максимальной скорости горизонтального полета (для самолета Як 52 - VГП =300 км/ч, для Як-55 - VГП.макс).

С уменьшением скорости полета и увеличением угла атаки потребная тяга и мощность уменьшаются, минимальная потребная тяга находится проведением касательной к кривой РП параллельно оси скорости. Точка касания обозначает угол атаки, при котором требуется минимальная тяга для горизонтального полета (для самолета Як-52 при Н=500м Рп =103кгс, для Як-55 при Н=500м РПмин=87кгс)

Из формулы потребной тяги следует, что минимальная тяга для горизонтального полета потребуется при максимальном качестве самолета

(4.12)

Максимальное качество самолета достигается при наивыгоднейшем угле атаки Скорость, соответствующая aнв, называется наивыгоднейшей скоростью горизонтального полета VНВ (для самолета Як-52 VНВ=162 км/ч, для Як-55 VНВ=137 км/ч).

При наивыгоднейшем угле атаки требуется минимальная потребная тяга РМИН. Следовательно, расход топлива на один километр пути будет минимальным и дальность полета максимальной.

Но расход топлива был бы минимальным, если бы двигатель работал без потерь. Поэтому для компенсации потерь требуется дополнительная тяга двигателя и общая тяга PПнв будет больше на эту величину. Минимальный километровый расход топлива получается на несколько большей скорости, чем наивыгоднейшая

Далее, анализируя график на Ошибка! Неизвестный аргумент ключа., видно, что при дальнейшем уменьшении скорости (после наивыгоднейшей) и увеличении угла атаки потребная тяга растет. Это объясняется ухудшением качества самолета.

Скорость может быть уменьшена до минимальной, соответствующей критическому углу атаки. Касательная к кривой, параллельной оси Р, отмечает угол атаки и соответствующую ему минимальную скорость горизонтального полета.

Для того чтобы установить ту или иную скорость горизонтального полета самолета, летчику необходимо создать условия (изменяя тягу двигателя) равенства располагаемой и потребной тяги (РП=Рр). Поэтому на скоростях, меньших максимальной, летчику необходимо уменьшить тягу двигателя до определенной величины, и точка пересечения располагаемой и потребной тяги будет на меньшей, выбранной летчиком скорости.

Если располагаемая тяга будет больше потребной, то самолет начнет подниматься, если меньше - снижаться. В обоих случаях самолет не будет лететь горизонтально.

Анализируя график Ошибка! Неизвестный аргумент ключа., можно сделать вывод, что на всех скоростях, кроме максимальной, тяга силовой установки РРмакс больше потребной тяги РП.

ДИАПАЗОН СКОРОСТЕЙ ГОРИЗОНТАЛЬНОГО ПОЛЕТА

Диапазоном скоростей горизонтального полета называется разность между максимальной и минимальной скоростями на одной и той же высоте полета.

Для сравнения разных самолетов пользуются понятием относительный диапазон скоростей. Относительным диапазоном скоростей называется отношение диапазона скоростей к максимальной скорости полета. Чем больше относительный диапазон скоростей, тем лучше самолет в летном отношении. В относительном диапазоне скоростей самолета находятся также характерные скорости, как экономическая, наивыгоднейшая и максимальная.

Диапазон скоростей характеризует степень аэродинамического совершенства самолета. Величина диапазона скоростей определяет скорости горизонтального полета, на которых самолет может безопасно совершать горизонтальный полет. Чем больше этот диапазон, тем больше маневренные возможности самолета.

В связи с ограничением максимальной скорости до υдоп и минимальной до υнаив диапазон скоростей может быть:

—теоретическим —

;

—практическим —

.

Для увеличения диапазона скоростей необходимо или увеличить максимальную скорость, или уменьшить минимальную, или изменить одновременно обе. Увеличение максимальной скорости может быть достигнуто увеличением тяги двигателя и улучшением аэродинамики самолета. Минимальная же скорость может быть уменьшена путем применения механизации крыла.

Изменение диапазона скоростей горизонтального полета с подъемом на высоту

Диапазон скоростей изменяется от различных внешних условий (высоты полета, температуры воздуха) и от эксплуатационных факторов (изменения веса и т. д.).

На рис. показано изменение диапазона скоростей с поднятием на высоту дозвукового самолета с ТРД.

Как видно из графика, диапазон скоростей до высоты 11км незначительно возрастает, а в дальнейшем уменьшается, и на высоте, соответствующей статическому потолку, обращается в нуль. На статическом потолке полет возможен только на одной скорости и на одном угле атаки - наивыгоднейшем. На этой скорости, как известно, аэродинамическое качество имеет максимальную величину, а потребная тяга минимальна.

ПЕРВЫЕ И ВТОРЫЕ РЕЖИМЫ ГОРИЗОНТАЛЬНОГО ПОЛЕТА

В установившемся горизонтальном полете тяга силовой установки должна уравновешивать лобовое сопротивление. Это значит, что в любом режиме полета, кроме Vмакс, летчику необходимо задросселировать двигатель (уменьшить обороты коленчатого вала), то есть уменьшить мощность до такой степени, чтобы она сравнялась с потребной мощностью.

Если после уравновешивания самолета в одном из режимов установившегося горизонтального полета скорость по какой-либо причине изменится, то поведение самолета в большей степени будет зависеть от соотношения приращения потребной мощности и располагаемой мощности задросселированного двигателя Nдр.

Интервал первых режимов - это все скорости от Vмакс до Vэк, для которых производные мощности от скорости полета больше производной мощности задросселированного двигателя от скорости . Интервал вторых режимов - это все скорости от Vэк до Vмин, для которых

Это значит, что увеличение скорости горизонтального полета на первых режимах сопровождается уменьшением избытка мощности, а на вторых режимах - увеличением избытка мощности. Границей первых и вторых режимов горизонтального полета является экономическая скорость горизонтального полета, при которой устанавливается равенство (Рис. 6).

Полет самолета на первых режимах выполняется на малых углах атаки, когда крыло обтекается установившимся ламинарным воздушным потоком, самолет хорошо устойчив и управляем. Поэтому обычно пользуются первыми режимами.

Для установившегося горизонтального полета на некоторой скорости V1 в области первых режимов (Ошибка! Неизвестный аргумент ключа.) двигатель должен быть задросселирован до характеристики Мдр1. При случайном увеличении скорости горизонтального полета возникает отрицательный избыток мощности, самолет будет двигаться с торможением и вернется к исходной скорости. При уменьшении скорости избыток мощности будет направлен вперед и самолет также восстановит скорость исходного режима. Для сохранения скорости на первых режимах от летчика требуется одно - выдерживать горизонтальный полет при помощи руля высоты. Если летчику по условиям полета необходимо перейти на новую, большую скорость, в пределах первых режимов на той же высоте, то, сохраняя горизонтальный полет, он должен увеличить мощность двигателя, а для перехода на меньшую скорость горизонтального полета - уменьшить мощность силовой установки (уменьшить частоту вращения коленчатого вала).

Рис. 6 Первые и вторые режимы и диапазоны скоростей горизонтального полета

Полет на вторых режимах горизонтального полета происходит на больших углах атаки и на скоростях горизонтального полета, меньших, чем экономическая скорость, что связано с ухудшением обтекания крыла и понижением эффективности рулей, и тем самым ухудшением устойчивости и управляемости самолета, особенно поперечной. Поэтому летать на вторых режимах не рекомендуется. К ним прибегают лишь при некоторых тренировочных полетах и при выполнении посадки.

Рассмотрим влияние изменения скорости на выполнение горизонтального полета на вторых режимах. Пусть самолет выполняет горизонтальный полет на скорости V2. С увеличением скорости возникает положительный избыток мощности, и если летчик не изменит режим работы двигателя и будет выдерживать горизонтальный полет, то увеличение скорости будет продолжаться, пока не наступит равновесие на новой скорости Vi, лежащей в области первых режимов. При случайном уменьшении скорости избыток лобового сопротивления над тягой вызывает торможение самолета до минимальной скорости (самолет может сорваться в штопор).

Таким образом, на вторых режимах выдерживание постоянства высоты полета не обеспечивает сохранение скорости.

При выполнении длительного полета на вторых режимах для восстановления исходной скорости летчику необходимо либо изменением режима работы двигателя (при увеличении скорости тягу необходимо уменьшить, а при уменьшении скорости - увеличить), либо изменением угла наклона траектории полета восстановить заданную скорость горизонтального полета. Во втором случае траектория полета будет не прямолинейной, а волнообразной.

В области вторых режимов для увеличения скорости горизонтального полета необходимо сначала увеличить мощность двигателя, а затем, когда скорость начнет возрастать, уменьшить ее. Для уменьшения скорости горизонтального полета следует несколько задросселировать двигатель (уменьшить частоту вращения коленчатого вала), чтобы скорость начала падать, после чего увеличить мощность до потребной.

То есть на вторых режимах горизонтального полета требуется двойное движение рычагом управления дроссельной заслонкой карбюратора.

Исходя из вышесказанного, можно сделать вывод, что допускать уменьшение скорости ниже экономической не следует. Иначе говоря, для самолетов Як-52 и Як-55 экономическая скорость является практически минимальной скоростью горизонтального полета.

Разность между скоростью VГП, которую летчик выдерживает в горизонтальном полете, и экономической скоростью называется запасом скорости DV:

DV=VГП-VЭК

В полете на малой высоте рекомендуется иметь запас скорости (для самолета Як-52 Vмин=170 км/ч), равный примерно 20...30% экономической скорости горизонтального полета.

Из сказанного ясно, что в летной практике запас скорости имеет большое значение. Имея достаточный запас скорости, летчик гарантирован от неожиданного попадания в интервал вторых режимов, следовательно, и от опасности потери скорости.

ЭВОЛЮТИВНАЯ СКОРОСТЬ ПОЛЕТА

Эволютивная скорость летательного аппарата - минимальная скорость, на которой самолет имеет возможность выполнять некоторые минимальные эволюции (маневры) Для неманевренных самолетов различают минимальную эволютивную скорость: при разбеге, взлете, посадке и при уходе на второй круг.

Запас скорости

Разность между скоростью VГП, которую летчик выдерживает в горизонтальном полете, и экономической скоростью называется запасом скорости DV:

DV=VГП-VЭК. (4.14)

В полете на малой высоте рекомендуется иметь запас скорости (для самолета Як-52 Vмин=170 км/ч), равный примерно 20...30% экономической скорости горизонтального полета.

Из сказанного ясно, что в летной практике запас скорости имеет большое значение. Имея достаточный запас скорости, летчик гарантирован от неожиданного попадания в интервал вторых режимов, следовательно, и от опасности потери скорости.

ВЛИЯНИЕ ВЫСОТЫ НА ВЕЛИЧИНУ СКОРОСТИ ГОРИЗОНТАЛЬНОГО ПОЛЕТА

В горизонтальном полете

С увеличением высоты полета плотность воздуха ρН уменьшается, следовательно, для сохранения равенства Y=G при постоянных значениях G, Су и S необходимо уменьшение плотности воздуха компенсировать увеличением потребной скорости VГП так, чтобы скоростной напор остался неизменным.

Таким образом, с увеличением высоты потребная скорость горизонтального полета увеличивается, а скоростной напор сохраняется неизменным. В данном случае рассматривается увеличение потребной скорости для горизонтального полета на определенной высоте, а не вообще скорости полета самолета, которую он способен развить.

Установим зависимость между потребной скоростью горизонтального полета на высоте и потребной скоростью у земли при неизменном полетном весе самолета и постоянном коэффициенте подъемной силы.

Обозначив потребную скорость для горизонтального полета и плотность воздуха на высоте Н через VН и ρН, а у земли V0 и ρ0, получим формулу изменения потребной скорости для горизонтального полета с изменением высоты полета

Поделив почленно первую формулу на вторую, получим

Формула служит для пересчета приборной скорости полета с подъемом на высоту в истинную скорость полета самолета.

Приборная скорость полета — это скорость, измеряемая показаниями стрелки прибора УС-450К и обозначается VПР. Поскольку разметку шкалы указателя скорости осуществляют по величине плотности воздуха у земли ρ0, т.е. на нулевой высоте, то приборная скорость у земли VПР будет равна истинной воздушной скорости V0 и тогда истинная скорость на высоте может быть определена по формуле

Такое определение справедливо только при условии, если скоростной напор замеряется по стрелке без искажения и инструментальная поправка равна нулю. В действительности в показания прибора приходится вносить инструментальную и аэродинамическую поправки. Для определения инструментальной поправки каждый указатель скорости тарируется в лаборатории и к нему прикладывается график инструментальных поправок.

Приборная скорость, исправленная на инструментальную поправку, называется исправленной приборной скоростью.

Появление аэродинамической поправки к указателю скорости объясняется тем, что приемник воздушного давления (ПВД) воспринимает не атмосферное давление, а несколько отличное от него. Одной из причин этого является искажение потока самим приемником ПВД. Еще больше сказываются на величине воспринимаемых приемником ПВД давлений (особенно в статических отверстиях приемника) возмущения, создаваемые в воздухе самолетом. Эти возмущения существенно зависят от места установки ПВД на самолете. На самолетах Як-52 и Як-55 ПВД установлен в зоне наименьшего возмущения воздушного потока на левом полукрыле.

Поправка к показаниям прибора обусловливается указанными выше обстоятельствами и называется аэродинамической поправкой, обозначается через δVа:

Приборную скорость, исправленную на инструментальную и аэродинамическую поправки, называют индикаторной земной скоростью и обозначаются через V13.

Для определения величины аэродинамической поправки указатель скорости тарируется в полете на мерной базе при испытаниях самолета.

Аэродинамические поправки самолетов различных типов могут быть различными как по величине, так и по знаку, и даже у самолетов одного и того же типа могут быть колебания в величине аэродинамических поправок, что объясняется практически неизбежными отличиями в установке ПВД на различных экземплярах самолетов.

У большинства самолетов величина аэродинамической поправки зависит от скорости полета (рис.). На рисунке приведен усредненный график аэродинамических поправок к указателю скорости, установленному на самолетах Як-52 и Як-55.

График аэродинамических поправок к указателю скорости

самолетов Як-52 и Як-55

ВЛИЯНИЕ МАССЫ САМОЛЕТА НА ПОТРЕБНЫЕ СКОРОСТИ.

Удельная нагрузка на крыло в полете меняется в зависимости от количества горючего (его расхода).

Рассмотрим горизонтальный полет самолета Як-52 при изменении нагрузки, но при одинаковом угле атаки и на одной высоте.

Пусть полетный вес уменьшается, но условие горизонтального полета сохраняется (Y=G), поэтому соответственно необходимо уменьшить подъемную силу. Это можно выполнить либо уменьшением угла атаки, либо путем уменьшения скорости до величины V1.

Если известна потребная скорость V при расчетном весе G, то вычислить потребную скорость при новом весе можно по формуле

разделив второе выражение на первое и сократив, получим

Из формулы видно, что при уменьшении полетного веса потребная скорость уменьшается пропорционально квадратному корню отношения весов (плотность воздуха неизменна). При уменьшении веса на самолетах Як-52 и Як-55 потребная скорость горизонтального полета уменьшается.

Задача. Летчик выполняет перелет на высоте 500 м. Первоначальный полетный вес составлял 1240 кгс Скорость полета V=240 км/ч. К концу перелета израсходовано 80 кгс горючего. Какова величина необходимой скорости горизонтального полета при том же угле атаки и той же высоте полета.

Решение 1 Определим вес самолета без израсходованного горючего. Он составляет 1160 кгс.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]