Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тема№8.doc
Скачиваний:
3
Добавлен:
07.08.2019
Размер:
4.71 Mб
Скачать

Характер связи с дозой облучения

По данному критерию радиобиологические эффекты четко разграничены на стохастические (вероятностные) и нестохастические (детерминиро­ванные).

Признаками стохастического эффекта являются (1) беспороговость и (2) альтернативный характер. Беспороговость стохастических эффектов означает, что сколь угодно малые дозы облучения способны влиять на ча­стоту их возникновения. Альтернативный характер проявляется в том, что стохастические эффекты, подчиняясь закону «все или ничего», не мо­гут быть охарактеризованы таким показателем, как «выраженность». Примером стохастического эффекта облучения на клеточном уровне мо­жет служить гибель клетки; на уровне целостного организма — возникно­вение злокачественной опухоли. С увеличением дозы облучения вероят­ность возникновения стохастического эффекта растет (рис. 66, слева), но его качество остается неизменным. При достаточно больших дозах часть облученных организмов погибает до развития у них соответствующих стохастических эффектов, что объясняет «плато» на графике, показанное пунктиром.

Признаками нестохастического эффекта являются (1) пороговый ха­рактер и (2) градиентная связь амплитуды с дозой облучения. Если доза облучения превышает пороговую величину (Дп), то нестохастический эф­фект возникает со 100% вероятностью, причем его амплитуда монотонно возрастает с увеличением дозы.

Знание дозовых «порогов» нестохастических эффектов (т. е. минима­льных значений вызывающих их доз) весьма важно для диагностики и профилактики лучевых поражений.

Дозовые пороги некоторых нестохастических эффектов облучения организма человека

Нестохастические эффекты

Дозовые «пороги», сГр

Острая лучевая реакция

25

Обратимая стерильность у мужчин

40

Тошнота, рвота

50

Острая лучевая болезнь

100

Хроническая лучевая болезнь

100

Лучевая катаракта

200

Значение для судьбы облученного организма

Как правило, радиобиологические эффекты неблагоприятным образом сказываются на биологическом объекте. Исключением из этого правила является герметический эффект. Радиационный гормезис проявляется повышением жизнеспособности организмов под влиянием облучения в малых дозах. О возможности такого феномена свидетельствуют следую­щие факты.

♦ Всхожесть и энергия прорастания семян может быть повышена их предпосевным облучением.

♦ Выращивание животных в условиях изоляции от естественного ра­диационного фона сопряжено со снижением неспецифической резистен­тности относительно контрольного уровня.

♦ У населения территорий, имеющих высокий уровень природного радиационного фона (до 175 мЗв в год), не наблюдается более высокой онкологической заболеваемости, чем в контрольных популяциях. Поско­льку повышение заболеваемости, сопряженное с повышенным облучени­ем, вытекает из гипотезы о беспороговости канцерогенного действия ИИ, этот факт не может быть объяснен без допущения о стимулирующем действии малых доз ИИ на неспецифическую резистентность организма (т. е. о герметическом эффекте).

♦ Прием радоновых ванн, сопровождающийся облучением организма в малых дозах, обладает положительным влиянием на функциональное состояние и резистентность организма.

Реальность герметического эффекта признается не всеми специали­стами.

Возможность передачи по наследству последующим поколениям. Изме­нения в генетическом аппарате клеток человеческого организма могут быть унаследованы потомством лишь при условии, что эти изменения возникают в половых клетках. Мутации соматических клеток в естествен­ных условиях не наследуются (такая возможность создается лишь при клонировании организма). Поэтому практически важно разграничивать соматические (возникающие в соматических клетках) и генетические (ин­дуцируемые при воздействии ИИ на половые клетки) радиобиологиче­ские эффекты. При общем облучении организма можно ожидать появле­ния как соматических, так и генетических эффектов.

Следует подчеркнуть, что все генетические эффекты облучения про­являются в виде врожденных признаков. В то же время далеко не все врожденные признаки являются проявлением генетических эффектов облучения. Наблюдения за лицами, родители которых были облучены до зачатия во время атомных бомбардировок Японии, не выявили значимо­го возрастания частоты врожденных дефектов. В то же время риск таких дефектов чрезвычайно высок при равном по дозе лучевом воздействии на эмбрион или плод — особенно при облучении беременной женщины в сроки с 8-й по 15-ю нед беременности. В последнем случае врожденными являются изменения, обусловленные не генетическими, а соматическими эффектами облучения плода.

Начальные этапы биологической стадии в действии ионизирующих излучений

Первичные стадии в действии излучений

В действии ионизирующих излучений на биологический объект выделя­ют несколько стадий.

В стадии физических процессов образуются ионизированные и возбуж­денные атомы и молекулы, случайным образом распределенные в веще­стве, поскольку вероятность поглощения энергии тем или иным атомом, из которых построены биологические молекулы, практически одинакова.

На стадии физико-химических явлений поглощенная энергия мигриру­ет по макромолекулярным структурам и распределяется между отдельны­ми биомолекулами, что сопровождается разрывами химических связей там, где эти связи менее прочны. Поэтому, хотя на физической стадии поглощение энергии различными молекулярными структурами было не избирательным, по окончании физико-химической стадии разрывы свя­зей обнаруживаются преимущественно в определенных структурах. В белковых молекулах — это аминокислоты, содержащие спаренные ариль-ные радикалы (например, триптофан), а также тиоловые и дисульфидные группировки; в нуклеиновых кислотах — это азотистые (в первую оче­редь, пиримидиновые) основания. Разрывы химических связей приводят к образованию свободных радикалов, отличающихся очень высокой хи­мической активностью.

Во время химической стадии образовавшиеся свободные радикалы вступают в химические реакции как между собой, так и с другими моле­кулами.

Названные эффекты могут быть следствием поглощения энергии из­лучения самими макромолекулами белков, нуклеопротеидов, структура­ми внутриклеточных мембран. В этом случае говорят о прямом действии излучения. Энергия излучения может также поглощаться молекулами воды, которые подвергаются радиолизу. Повреждение биомолекул хими­чески высокоактивными продуктами радиолиза воды называют непрямым действием излучения.

Рассмотренные стадии в действии излучений получили наименование первичных. Они осуществляются в течение чрезвычайно короткого про­межутка времени (в пределах 1 миллисекунды) и являются общими для действия излучений как на живую, так и на неживую материю.

фоэфирных связей в макромолекуле, распад дезоксирибозы. Кроме того, наблюдаются повреждения ДНК-мембранного комплекса, разрушение связей ДНК—белок, повышающее уязвимость ДНК при атаке вторич­ными радикалами и ферментами, сшивки ДНК—ДНК и ДНК—белок, нарушения вторичной, третичной и четвертичной структур этого биопо­лимера.

В липидной фракции в присутствии кислорода вследствие активации свободнорадикальных процессов накапливаются продукты перекисного окисления, в первую очередь перекиси и гидроперекиси ненасыщенных жирных кислот. В ряде случаев окислительные процессы в липидах могут принять цепной характер. Липиды являются структурными компонента­ми внутриклеточных мембран, и их повреждение приводит к существен­ному нарушению метаболических процессов в клетке, вносит значимый вклад в патогенез лучевого поражения. Некоторые продукты перекисного окисления липидов (гидроперекиси, перекиси, эпоксиды, альдегиды, кетоны) обладают выраженными радиомиметическими свойствами: под их влиянием в клетках возникают повреждения, во многом сходные с теми, которые вызываются самим облучением. Такие продукты получили наи­менование первичных радиотоксинов. Липидные радиотоксины, в частно­сти, изменяют свойства внутриклеточных мембран, их проницаемость, способствуют высвобождению ферментов. Они нарушают регуляцию биохимических процессов, вызывают глубокие нарушения ультраструк­туры клеток.

Активации процессов перекисного окисления липидов способствует снижение активности собственных антиокислительных систем клетки. Это обусловлено как радиационным разрушением естественных анти­окислителей в клетке, которыми являются в первую очередь фосфолипи-ды, так и разрушением фосфолипидов в результате активации цепной окислительной реакции.

К первичным радиотоксинам относят также образующиеся в облучен­ных клетках продукты окисления фенолов — хиноны и семихиноны.

Изменения обнаруживаются и в других молекулярных компонентах клетки. Наблюдаются повреждения азотистых оснований и разрывы це­пей РНК, распад мукополисахаридов, в частности гиалуроновой кисло­ты, нарушения первичной (вследствие избирательного поражения отде­льных аминокислот) и вторичной структур ферментов, изменения их функциональных свойств и химических характеристик и т. п.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]