Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
т.вероятности.docx
Скачиваний:
8
Добавлен:
15.08.2019
Размер:
548.68 Кб
Скачать

Cлучайные величины. Функции распределения, их свойства.

Основные определения ~ Функция распределения случайной величины. Её свойства ~ Функция распределения дискретной случайной величины ~ Функция распределения и плотность вероятности непрерывной случайной величины ~ Квантили ~ Вероятность попадания в интервал

Основные определения. Результат любого случайного эксперимента можно характеризовать качественно и количественно. Качественный результат случайного эксперимента - случайное событие. Любая количественная характеристика, которая в результате случайного эксперимента может принять одно из некоторого множества значений, - случайная величина. Случайная величина является одним из центральных понятий теории вероятностей.

Пусть - произвольное вероятностное пространство. Случайной величиной называется действительная числовая функция  = ( ),   , такая, что при любом действительном x .

Событие принято записывать в виде  < x. В дальнейшем случайные величины будем обозначать строчными греческими буквами  ,  ,  , …

Случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента. В первом случае мы имеем дело с дискретной случайной величиной (она принимает значения из дискретного числового множества M={1, 2, 3, 4, 5, 6} ; во втором случае - с непрерывной случайной величиной (она принимает значения из непрерывного числового множества - из промежутка числовой прямой I=[100, 3000]).

Функция распределения случайной величины. Её свойства

Каждая случайная величина полностью определяется своей функцией распределения.

Если  .- случайная величина, то функция F(x) = F (x) = P( < x) называется функцией распределения случайной величины  . Здесь P( < x) - вероятность того, что случайная величина  принимает значение, меньшее x.

Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением.

Функция распределения любой случайной величины обладает следующими свойствами:

  • F(x) определена на всей числовой прямой R;

  • F(x) не убывает, т.е. если x1 x2, то F(x1) F(x2);

  • F(- )=0, F(+ )=1, т.е. и ;

  • F(x) непрерывна справа, т.е.

.

Функция распределения дискретной случайной величины

Если  - дискретная случайная величина, принимающая значения x1 < x2 < … < xi < … с вероятностями p1 < p2 < … < pi < …, то таблица вида

x1

x2

xi

p1

p2

pi

называется распределением дискретной случайной величины.

Функция распределения случайной величины, с таким распределением, имеет вид

У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид:

1

2

3

4

5

6

1/6

1/6

1/6

1/6

1/6

1/6

Функция распределения и плотность вероятности непрерывной случайной величины

Если функция распределения F (x) непрерывна, то случайная величина  называется непрерывной случайной величиной.

Если функция распределения непрерывной случайной величины дифференцируема, то более наглядное представление о случайной величине дает плотность вероятности случайной величины p (x), которая связана с функцией распределения F (x) формулами

и .

Отсюда, в частности, следует, что для любой случайной величины .

Квантили

При решении практических задач часто требуется найти значение x, при котором функция распределения F (x) случайной величины  принимает заданное значение p, т.е. требуется решить уравнение F (x) = p. Решения такого уравнения (соответствующие значения x) в теории вероятностей называются квантилями.

Квантилью xp (p-квантилью, квантилью уровня p) случайной величины , имеющей функцию распределения F (x), называют решение xp уравнения F (x) = p, p (0, 1). Для некоторых p уравнение F (x) = p может иметь несколько решений, для некоторых - ни одного. Это означает, что для соответствующей случайной величины некоторые квантили определены неоднозначно, а некоторые кванитили не существуют.

Квантили, наиболее часто встречающиеся в практических задачах, имеют свои названия:

медиана - квантиль уровня 0.5;

нижняя квартиль - квантиль уровня 0.25;

верхняя квартиль - квантиль уровня 0.75;

децили - квантили уровней 0.1, 0.2, …, 0.9;

процентили - квантили уровней 0.01, 0.02, …, 0.99.

Вероятность попадания в интервал

Вероятность того, что значение случайной величины F (x) попадает в интервал (a, b), равная P(a <  < b) = F (b) -F (a), вычисляется по формулам:

- для непрерывной случайной величины и

- для дискретной случайной величины.

Если a= - , то ,

если b= , то .

Числовые характеристики случайных величин.

Математическое ожидание случайной величины ~ Дисперсия случайной величины ~ Моменты ~ Ассиметрия ~ Эксцесс ~ Среднее геометрическое и среднее гармоническое

 

Каждая случайная величина полностью определяется своей функцией распределения.

В то же время при решении практических задач достаточно знать несколько числовых параметров, которые позволяют представить основные особенности случайной величины в сжатой форме. К таким величинам относятся в первую очередь математическое ожидание и дисперсия.

 

Математическое ожидание случайной величины

Математическое ожидание - число, вокруг которого сосредоточены значения случайной величины. Математическое ожидание случайной величины  обозначается M .

Математическое ожидание дискретной случайной величины  , имеющей распределение

 

x1

x2

...

xn

p1

p2

...

pn

называется величина , если число значений случайной величины конечно.

Если число значений случайной величины счетно, то . При этом, если ряд в правой части равенства расходится, то говорят, что случайная величина  не имеет математического ожидания.

Математическое ожидание непрерывной случайной величины с плотностью вероятностей p (x) вычисляется по формуле . При этом, если интеграл в правой части равенства расходится, то говорят, что случайная величина  не имеет математического ожидания.

Если случайная величина  является функцией случайной величины  ,  = f(x), то

.

Аналогичные формулы справедливы для функций дискретной случайной величины:

, .

Основные свойства математического ожидания:

  • математическое ожидание константы равно этой константе, Mc=c ;

  • математическое ожидание - линейный функционал на пространстве случайных величин, т.е. для любых двух случайных величин  ,  и произвольных постоянных a и b справедливо: M(a + b ) = a M( )+ b M( );

  • математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий, т.е. M(  ) = M( )M( ).