Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KSE_ekzamen.docx
Скачиваний:
4
Добавлен:
15.08.2019
Размер:
108.76 Кб
Скачать

10. Галилей и принцип относительности.

1. Принцип относительности в классической механике.

Впервые этот принцип был установлен Галилеем, но окончатель­ную формулировку получил лишь в механике Ньютона. Для его понимания нам потребуется ввести понятие системы отсчета, или координат. Как известно, положение движущегося тела в каждый момент времени определяется по отношению к некото­рому другому телу, которое называется системой отсчета. С этим телом связана соответствующая система координат, например, знакомая нам декартова система координат. На плоскости движе­ние тела или материальной точки определяется двумя координатами: абсциссой х, показывающей расстояние точки от начала ко­ординат по горизонтальной оси, и ординатой у, измеряющей рас­стояние точки от начала координат по вертикальной оси. В пространстве к этим координатам добавляется третья координа­та z.

Среди систем отсчета особо выделяют инерциальные системы, которые находятся друг относительно друга либо в покое, ли­бо в равномерном и прямолинейном движении. Особая роль инерциальных систем заключается в том, что для них выполня­ется принцип относительности.

Принцип относительности означает, что во всех инерциальных системах все механические процессы описываются одинаковым образом.

Точнее говоря, в таких системах законы движения тел описыва­ются теми же самыми математическими уравнениями или формулами. Иллюстрируя этот принцип, Галилей приводил пример равномерного прямолинейного движения корабля, внутри которого все явления происходят также как на берегу.

Галилео Галилей, основоположник экспериментальной физики, учёный, философ, математик, физик и астроном, родился 15 февраля 1564 года в городе Пиза в семье известного музыканта.

Определение принципа относительности Галилея Принцип относительности Галилея – это принцип физического равноправия инерциальных систем отсчёта в классической механике, проявляющегося в том, что законы механики во всех таких системах одинаковы.  Отсюда следует, что никакими механическими опытами, проводящимися в какой-либо инерциальной системе, нельзя определить, покоится ли данная система или движется равномерно и прямолинейно. Это положение было впервые установлено Г. Галилеем в 1636.  Одинаковость законов механики для инерциальных систем Галилей иллюстрировал на примере явлений, происходящих под палубой корабля, покоящегося или движущегося равномерно и прямолинейно (относительно Земли, которую можно с достаточной степенью точности считать инерциальной системой отсчёта): «Заставьте теперь корабль двигаться с любой скоростью и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно... Бросая какую-нибудь вещь товарищу, вы не должны будете бросать ее с большей силой, когда он будет находиться на носу, а вы на корме, чем когда ваше взаимное положение будет обратным; капли, как и ранее, будут падать в нижний сосуд, и ни одна не упадет ближе к корме, хотя, пока капля находится в воздухе, корабль пройдет много пядей»  Движение материальной точки относительно: её положение, скорость, вид траектории зависят от того, по отношению к какой системе отсчёта (телу отсчёта) это движение рассматривается.  В то же время законы классической механики, т. е. соотношения, которые связывают величины, описывающие движение материальных точек и взаимодействие между ними, одинаковы во всех инерциальных системах отсчёта.  Относительность механического движения и одинаковость (безотносительность) законов механики в разных инерциальных системах отсчёта и составляют содержание Галилеева принципа относительности. 2. Математическое выражение принципа относительности Галилея Математически принцип относительности Галилея выражает инвариантность (неизменность) уравнений механики относительно преобразований координат движущихся точек (и времени) при переходе от одной инерциальной системы к другой — преобразований Галилея. Пусть имеются две инерциальные системы отсчёта, одну из которых, S, условимся считать покоящейся; вторая система, S', движется по отношению к S с постоянной скоростью u так, как показано на рисунке. Тогда преобразования Галилея для координат материальной точки в системах S и S' будут иметь вид: x' = x - ut, у' = у, z' = z, t' = t (1) (штрихованные величины относятся к системе S', нештрихованные — к S). Т. о., время в классической механике, как и расстояние между любыми фиксированными точками, считается одинаковым во всех системах отсчёта. Из преобразований Галилея можно получить соотношения между скоростями движения точки и её ускорениями в обеих системах: v' = v - u, (2) a' = a. В классической механике движение материальной точки определяется вторым законом Ньютона: F = ma, (3) где m — масса точки, a F — равнодействующая всех приложенных к ней сил. При этом силы (и массы) являются в классической механике инвариантами, т. е. величинами, не изменяющимися при переходе от одной системы отсчёта к другой.  Поэтому при преобразованиях Галилея уравнение (3) не меняется.  Это и есть математическое выражение Галилеева принципа относительности.

11. Кеплер и закон небесной механики.

Много лет изучая движение Марса, Кеплер экспериментально открывает три закона движения планет, за пятьдесят с лишним лет до открытия Ньютоном закона всемирного тяготения. Еще не понимая, почему планеты движутся так, а не иначе. Это был каторжный труд и гениальное предвидение. Все три закона Кеплера являются следствиями закона тяготения.

Закон.

Основная задача небесной механики – это исследование движения небесных тел под действием сил всемирного тяготения. А именно расчет орбит планет, комет, астероидов, искусственных спутников Земли, космических аппаратов, звезд в двойных и кратных системах. Все задачи в математическом смысле очень трудны и за редким исключением решаются только численными методами с помощью самых больших ЭВМ. Однако модельные задачи, в которых тела рассматриваются как материальные точки и можно пренебречь влиянием других тел, можно решить в общем виде, т.е. получить формулы для орбит планет и спутников. Простейшей считается задача двух тел, когда одно значительно больше другого и система отсчета связана с этим большим телом.

Первый закон Кеплера. Все планеты Солнечной системы вращаются вокруг Солнца по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

Второй закон Кеплера Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади: скорость движения планет максимальна в перигелии и минимальна в афелии.

Третий закон Кеплера. Квадраты периодов обращений планет вокруг Солнца соотносятся между собой, как кубы их средних расстояний от Солнца:

Именно для этого случая три закона движения планет относительно Солнца были получены эмпирически Иоганном Кеплером. Как же он это сделал? Кеплеру были известны: координаты Марса на небесной сфере с точностью до 2” по данным наблюдений его учителя Тихо Браге; относительные расстояния планет от Солнца; синодические и сидерические периоды обращения планет. Далее он рассуждал примерно так.

Известно положение Марса во время противостояния (см. рис.). В треугольнике АВС буква А обозначает положение Марса, В - Земли, С – Солнца. Через промежуток времени, равный сидерическому периоду обращения Марса (687 дней) планета вернется в точку А, а Земля за это время переместится в точку В’. Поскольку угловые скорости движения Земли в течение года известны (они равны угловым скоростям видимого движения Солнца по эклиптике), можно вычислить угол АСВ’. Определив координаты Марса и Солнца в момент прохождения Землей через точку В’, мы можем, зная в треугольнике 2 угла, по теореме синусов рассчитать отношение стороны СВ’ к АС. Еще через один оборот Марса Земля придет в положение В" и можно будет определить отношение СВ" к тому же отрезку АС и т.д. Таким образом, точка за точкой можно получить представление об истинной форме орбиты Земли, установить, что она является эллипсом, в фокусе которого находится Солнце. Можно определить что, если время движения по дуге M3M4 = времени движения по дуге M1M2, то Пл. SM3M4 = Пл. SM1M2.

F1 и F2–фокусы эллипса, c-фокусное расстояние, а- большая полуось эллипса и среднее расстояние от планеты до Солнца.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]