Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОЧТИ ЗАКЛЮЧИТЕЛЬНАЯ.doc
Скачиваний:
44
Добавлен:
16.08.2019
Размер:
2.66 Mб
Скачать

2. Микропроцессорные средства

Микропроцессорная система (МПС) представляет собой функционально законченное изделие, состоящее из одного или нескольких устройств, главным образом микропроцессорных: микропроцессора и/или микроконтроллера.

Состав:

Генератор тактовых импульсов задаёт временной интервал, который является единицей измерения (квантом) продолжительности выполнения команды. Чем выше частота, тем при прочих равных условиях более быстродействующей является МПС. МП, ОЗУ и ПЗУ — это неотъемлемые части системы. Интерфейсы ввода и вывода — устройства сопряжения МПС с блоками ввода и вывода информации. Для измерительных приборов характерны устройства ввода в виде кнопочного пульта и измерительных преобразователей (АЦП, датчиков, блоки ввода цифровой информации). Устройства вывода обычно представляют цифровые табло, графический экран (дисплей), внешние устройства сопряжения с измерительной системой. Все блоки МПС связаны между собой шинами передачи цифровой информации. В МПС используют магистральный принцип связи, при котором блоки обмениваются информацией по единой шине данных. Количество линий в шине данных обычно соответствует разрядности МПС (количеству бит в слове данных). Шина адреса применяется для указания направления передачи данных — по ней передаётся адрес ячейки памяти или блока ввода-вывода, которые получают или передают информацию в данный момент. Шина управления служит для передачи сигналов, синхронизирующих всю работу МПС.

Применение в измерительных приборах

Главная особенность микропроцессора — возможность программирования логики работы. Поэтому МПС используются для управления процессом измерения (реализацией алгоритма измерения), обработки опытных данных, хранения и вывода результатов измерения и пр. Рассмотрим основные преимущества микропроцессорных средств измерения.

Многофункциональность. Замена измерительного комплекса (совокупности различных измерительных приборов) одним, многофункциональным. Такая замена в приборах с «жесткой» логикой неэкономична. Так как добавление новой функции требует ввода дополнительного блока. Программируемая логика позволяет сделать это добавлением блока программы. Число программ ограничено возможностями ПЗУ и блока управления.

Повышение точности — наиболее важный момент. Уменьшение погрешностей по сравнению с обычными цифровыми приборами при прочих равных условиях достигается за счет исключения систематических погрешностей в процессе самокалибровки: коррекция смещения нуля, учет собственной АЧХ прибора, учет нелинейности преобразователей. Самокалибровка в данном случае — это измерение поправок или поправочных множителей и запоминание их в ОЗУ с целью использования на этапе обработки опытных данных.

Уменьшение влияния случайных погрешностей (путем проведения многократных измерений с последующей обработкой выборки — усреднением, вычислением мат. ожидания и пр.). Выявление и устранение грубых погрешностей (промахов). Вычисление и индикация оценки погрешности прямо в процессе измерения.

Компенсация внутренних шумов и повышение чувствительности средства измерения. Простое усреднение сигнала на входе прибора требует достаточно большого времени tycp. Один из вариантов — проведение многократных измерений и усреднение результатов с целью компенсации случайной составляющей измерительного сигнала. Пример — микропроцессорный ВЧ вольтметр среднеквадратического значения.

Расширение измерительных возможностей путем широкого использования косвенных и совокупных измерений, воспринимаемых оператором в этом случае как прямые (поскольку результат обработки появляется на индикаторе сразу после проведения измерения). Напомним, что косвенные измерения включают в себя вычисления результата по опытным данным по известному алгоритму. Совокупные измерения предполагают измерение нескольких одноименных физических величин путем решения системы уравнений, получаемых при прямых измерениях сочетаний этих величин. (Например, измерение сопротивления различных сочетаний резисторов — последовательное, параллельное, последовательно-параллельное, позволяют рассчитать сопротивление каждого из них). В этих случаях микропроцессор осуществляет управление процессом измерения по программе и проводит обработку опытных данных. Результат расчетов воспринимается оператором как результат прямых измерений, поскольку расчет делается быстро.

Упрощение и облегчение управления прибором. Все управление производится с кнопочной панели, выносные клавиатуры используют редко. Чем меньше кнопок, тем более «разумным» является прибор. Автоматизация установок прибора приводит к упрощению его использования (выбор пределов измерения, автоматическая калибровка и пр.). В ряде приборов использую контроль за ошибочными действиями оператора — индикация его неверных действий на табло или экране. Упрощает измерения визуализация результатов на экране в удобном виде, с дополнительными шкалами. Ряд приборов предусматривает вывод результатов на печатающее устройство или портативный носитель информации.

3. ИС автоматизированной камеральной обработки результатов

геодезических измерений.

3. ИС автоматизированной камеральной обработки результатов геодезических измерений.

Камеральная обработка инженерно-геодезических измерений

Назначение: автоматизация обработки инженерно-геодезических изысканий, полученных из журналов полевых измерений или в результате импорта файлов электронных геодезических приборов.

Функции программного обеспечения:

расчет и уравнивание теодолитных ходов различной конфигурации;

обработка результатов тахеометрической съемки местности;

обработка результатов нивелирования;

решение задач геодезической привязки (снесение координат, треугольник и др.);

вычисление площади замкнутого полигона по координатам его граничных точек;

нанесение результатов расчета и уравнивания на карту;

формирование и печать ведомостей решения геодезических задач.

Описание применения:

Для выполнения камеральной обработки инженерно-геодезических изысканий в ГИС «Карта 2008» предусмотрен программный комплекс «Геодезические вычисления». Процедуры, входящие в состав программного комплекса позволяют выполнить обработку данных полевых измерений, нанести результаты расчетов на карту и составит отчетную документацию в виде расчетных ведомостей. Все выполняемые процедуры, входящие в состав комплекса, программно связанны между собой и осуществляют автоматический обмен данными в ходе выполнения расчетов. Каждая процедура представляет собой отдельный диалог, для расчета соответствующих данных. Связь между процедурами осуществляется головной программой комплекса, выполняющей вызов процедур, обмен данными между ними, настройку и синхронизацию параметров функционирования комплекса.

Процедуры, входящие в состав комплекса позволяют выполнить расчеты и уравнивание геодезических измерений для последующего использования результатов в целях составления топографических планов, формирования землеустроительной документации, проектирования и мониторинга сооружений линейного типа, построения моделей рельефа и пр. Все режимы предназначены для обработки «сырых» измерений и предусматривают табличную форму ввода данных. Внешний вид и порядок ввода максимально приближены к традиционным формам заполнения полевых журналов. Обязательные поля для ввода информации выделяются цветом. Информацию в таблицы можно вводить ручным или автоматическим способами. При автоматическом способе ввода, данные для таблиц получаются в результате импорта геодезических измерений. Для этих целей в диалогах предусмотрена кнопка «Импорт». Введенные данные можно сохранить для повторного использования, кнопки «Сохранить» и «Чтение». Результаты расчетов и уравнивания можно нанести на карту (кнопка ) или оформить в виде отчетной ведомости (кнопка ). Предусмотрена возможность сохранения, полученных в ходе расчетов координат точек в каталоге координат. Каталог координат представляет собой таблицу базы данных в формате DBF и предназначен для хранения и использования планово высотного обоснования, координат точек теодолитных ходов и пикетов. Для идентификации точек в таблице, они классифицированы следующим образом:

планово-высотное обоснование 1-4 класса;

техническое нивелирование 1-4 класса;

точки теодолитных ходов (временное закрепление на местности);

пикетные точки (могут сохраняться и использоваться для обмена с другими системами).

В настоящее время существует два подхода к автоматизации – использование специализированного программного обеспечения геоинформационных систем (ГИС) и использование универсальных средств (электронных таблиц) в целях автоматизации геодезических вычислений.

Следует отметить, что специализированные ГИС изначально предназначаются для решения достаточно узкого круга задач, и расширению поддаются с трудом. Поэтому, если решение данной задачи лежит в пределах возможностей данной ГИС, то тогда задача с использованием её решается без труда, но если изначально ГИС не создавалась для работы с таким типом задач, то решить задачу с использованием данной системы будет весьма проблематично. Иными словами, например, ГИС, предназначенные для изучения и моделирования структуры рельефа, будет весьма сложно, если только вообще возможно, приспособить к решению задач из области обработки результатов измерений строительной геодезии.

Таких проблем не возникает при использовании универсальных средств типа электронных таблиц, потому что в этом случае все алгоритмы работы создаются «с нуля», что обеспечивает их наилучшую приспособленность к решению возникшей задачи по автоматизации, но возникают проблемы иного характера. Дело в том, что разработка качественного средства автоматизации вычислений – это весьма трудоемкий процесс, занимающий иногда достаточно много времени.

Конечно, оно потом окупается, но только при достаточно большом объеме вычислительных работ подобного типа, а при решении единичной задачи иногда оказывается быстрее, как ни странно это звучит, подсчитать требуемые результаты вручную. Поэтому необходимо четко представлять возможности различных геоинформационных систем для того, чтобы отдать предпочтение той или иной из них при решении конкретной задачи, а если среди них не окажется нужной, то тогда средство необходимо разработать вручную, если это оправдано с точки зрения затраченного времени и материальных ресурсов.