Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ № 5 ФИЗИЧЕСКИЕ ОСНОВЫ ИЗМЕРЕНИЙ.doc
Скачиваний:
8
Добавлен:
18.08.2019
Размер:
645.12 Кб
Скачать

§ 12. Волоконно-оптические преобразователи. (воп).

Световод – направляющая система для электромагнитных волн оптического диапазона, представляет собой стеклянное или полимерное волокно, покрытое оболочкой. Распространение света по световоду происходит за счёт явления полного внутреннего отражения на границе волокно-оболочка и характеризуется светопропусканием. Светопропускание определяется потерями энергии при распространении по волокну

T = Фвыхвх, где Фвх – световой поток на входе, а Фвых – на выходе световода

T = τ1τ2τ3, τ1 – характеризует потери за счёт отражения от торцов волокна на входе и выходе; τ2 – светопропускание материала световода, τ2 = e - εP, ε – показатель поглощения материала, Р – путь, проходимый лучом в волокне; τ3 – потери за счёт неполноты внутренних отражений, τ3 = ρn, ρ – потери при одном отражении, n – число отражений.

П ринцип действия ВОП динамических перемещений основан на модуляции интенсивности светового потока за счёт изменения зазора между поверхностью и торцами световодов. Свет от источника излучения по передающему световоду попадает на поверхность и, отразившись от неё, по приёмному световоду подводится к фотопреобразователю.

М ожно построить характеристику преобразователя Uфп = f(S). Очевидно, что увеличение зазора от S = 0 ведёт к увеличению Uфп. Однако при достижении некоторого максимума количество рассеиваемой световой энергии увеличивается, и это ведёт к спаду характеристики. Таким образом, на характеристике можно выделить 2 квазилинейных участка, в пределах которых коэффициент преобразования остаётся неизменным. Недостатком преобразователя является необходимость калибровки, т.к. Uфп зависит не только от зазора, но и от свойств поверхности и внешней засветки.

Достоинства ВОП: простота и низкая стоимость, слабая зависимость результатов от внешних э/м полей и температуры, возможность измерений в труднодоступных местах и т. д.

Тема 3. Генераторные измерительные преобразователи

В генераторных преобразователях выходной величиной являются. э.д.с. или заряд, функционально связанные с измеряемой неэлектрической величиной.

§ 13. Термоэлектрические преобразователи - основаны на термоэлектрическом эффекте, возникающем в цепи термопары.

Пусть имеются две пластинки из разных металлов, причём n1>n2.

а ) Плотность электронного газа в металле 1 больше, чем в металле 2

б) при их соприкосновении вследствие преимущественной диффузии электронов из 1 в 2 между металлами возникает контактная разность потенциалов.

К онтактная разность потенциалов Δφ при одинаковой температуре всех контактов в замкнутой цепи из металлических проводников не может создать тока, так как она лишь уравнивает потоки электронов в противоположных направлениях. Если найти алгебраическую сумму всех изменений потенциала в контактах такой цепи, то она будет равна нулю. Следовательно, в этих условиях контактная разность потенциалов Δφ не является э.д.с. Однако если температуры контактов C и D будут разными, то в цепи возникнет э.д.с.

Действительно, если подогреть контакт Д, то в нем произойдет переход электронов из металла B в металл A, а контактная разность потенциалов в соединении D возрастет. Так как в металле A на конце D электронов стало больше, то они устремятся к концу С. Увеличение концентрации электронов на конце C вызовет их переход из металла A в металл B через контакт C. Отсюда они по металлу B перейдут к контакту D. Таким образом, если температура контакта D будет все время больше, чем контакта С, то по замкнутой цепи будет происходить направленное движение электронов против часовой стрелки. Следовательно, в такой цепи действует э.д.с.

Э.д.с. в замкнутой цепи, составленной из разнородных металлов, которая обусловлена различными температурами контактов, называют термоэлектродвиукущей силой. Термо- э.д.с. в цепи из двух различных металлов прямо пропорциональна разности температур их контактов и зависит от рода металлов. Электрическая энергия в такой цепи получается за счет внутренней энергии источника, поддерживающего разность температур контактов.

П реобразователь, состоящий из двух разнородных металлов со спаянными концами, в котором создается электрическая энергия за счет внутренней энергии другого тела, поддерживающего разность температур спаев, называют термопарой. У термопары часто делают один спай, спаивая отрезки проволоки (или пластинки) из двух разнородных металлов, а к свободным концам присоединяют внешнюю цепь и измерительные приборы. Роль второго (холодного) спая выполняют контакты с проводами внешней цепи.

При разности температур точек 1 и 2 соединения двух разнородных проводников А и В, образующих термопару, в цепи термопары возникает термо -э.д.с. При неизменной температуре одной точки соединения (t2 = соnst)

EA-B = f(t1) – C = f1(t1)

где t1-температура другой точки соединения. Эта зависимость используется в термоэлектрических преобразователях для измерения температуры.

Д ля измерения термо -э.д.с. электроизмерительный прибор (милливольтметр, потенциометр) должен быть включен в цепь термопары.

Точка соединения проводников (электродов) 1 называется рабочим концом термопары, точки 2 и 2’ - свободные концы.

Чтобы термо -э.д.с. в цепи термопары однозначно определялась температурой рабочего конца, необходимо температуру свободных концов термопары поддерживать одинаковой и неизменной.

Градуировка термоэлектрических термометров - приборов, использующих термопары для измерения температуры, производится обычно при температуре свободных концов 0°С. Градуировочные таблицы для стандартных термопар также составлены при условии равенства температуры свободных концов 0°С. При практическом применении температура свободных концов термопары не равна 0°С, и поэтому необходимо вводить поправку.

Для изготовления термопар, применяемых в настоящее время для измерения температуры, используются в основном специальные сплавы. В таблице приведены характеристики термопар в соответствии с ГОСТ 6616-74.

Для измерения высоких температур используются термопары типов ТИП, ТИР и ТЕР. Термопары из благородных металлов (ТИП и ТПР) применяются при измерениях с повышенной точностью. В остальных случаях применяются термопары из неблагородных металлов (ТХА, ТХК).

Все стандартные термопары взаимозаменяемы. Градуировочные таблицы и допускаемые отклонения градуировочных характеристик приведены в ГОСТ 3044-77.

Электроды стандартных термопар выполняются из проволоки диаметром 0,5 мм - для термопар из благородных металлов и диаметром до 3,5 мм - для термопар из неблагородных металлов. Рабочий конец термопары образуется путем сваривания электродов.

Тип термо-пары

Наименование материалов электродов термопар

Термо-э.д.с

(при tрк = 100°С, tcк = =0°С), мВ

Верхний предел измеряемой температуры, °С при применении термопары

длительном

кратковременном

ТПП

Платинородий (10% родия) – платина

0,64

1300

1600

ТПР

Платинородий (30% родия) - платинородий (6% родия)

13,81(при tрк = 1800°С)

1600

1800

ТХА

Хромель (90% Ni + 10% Сr) - алюмель (94,83% Ni + 2% Аl + 2% Мn + 1% Si + 0,17% Fe

4,10

1000

1300

ТХК

Хромель - копель (56% Cu + 44% Ni)

6,90

600

800

И нерционность термопар характеризуется показателем тепловой инерции. Известны конструкции малоинерционных термопар, у которых показатель тепловой инерции составляет 5 - 20 с. Термопары в обычной арматуре имеют показатель тепловой инерции, равный нескольким минутам.

Эффект Пельтье. Выясним, что произойдет, если в цепь из двух разнородных металлов А и В, изображенных на рис., включить источник электрической энергии, который создаст ток такого же направления, как ток, возникающий в них при подогреве контакта D. В этом случае поток электронов в спае D будет тормозиться, так как они должны преодолевать контактную разность потенциалов в переходном слое контакта D. В спае C будет происходить обратное явление, электроны будут ускоряться, так как силы поля переходной области в этом контакте будут действовать на электроны в сторону их движения. Таким образом, в контакте D кинетическая энергия электронов будет переходить в потенциальную энергию, а в контакте C, наоборот, их потенциальная энергия будет переходить в кинетическую. Это означает, что при замыкании цепи контакт D будет охлаждаться, а контакт C – нагреваться. Это явление называют эффектом Пельтье и особенно сильно оно проявляется в полупроводниковых термоэлементах.

§ 14. Индукционные преобразователи - основаны на использовании закона электромагнитной индукции, согласно которому э.д.с., индуктированная в катушке, имеющей ω витков, e = - ω dФ/dt

где dФ/dt - скорость изменения магнитного потока, сцепленного с катушкой.

Индукционные преобразователи применяются для измерения скорости линейных и угловых перемещений.

В ыходной сигнал индукционных преобразователей может быть проинтегрирован или продифференцирован во времени с помощью электрических интегрирующих или дифференцирующих устройств. После этих преобразований сигнал становится пропорциональным соответственно перемещению или ускорению. Поэтому индукционные преобразователи используются также для измерения линейных и угловых перемещений и ускорений. Наибольшее применение индукционные преобразователи получили в приборах для измерения угловой скорости (тахометрах) и в приборах для измерения параметров вибраций, т. е. для измерения линейных и угловых перемещений и ускорений (в виброметрах и акселерометрах).

Индукционные преобразователи для тахометров представляют собой небольшие (1 - 100 Вт) генераторы постоянного или переменного тока обычно с независимым возбуждением от постоянного магнита, ротор которых механически связан с испытуемым валом. При использовании генератора постоянного тока об угловой скорости судят по э.д.с. генератора, а в случае применения генератора переменного тока угловую скорость можно определить по значению э.д.с. или ее частоте.

На рис. показано устройство индукционного преобразователя для измерения скорости линейного перемещения, а также амплитуды перемещения и ускорения. Преобразователь представляет собой цилиндрическую катушку 1, перемещающуюся в кольцевом зазоре магнитопровода 2. Цилиндрический постоянный магнит 3 создает в кольцевом зазоре постоянное радиальное магнитное поле. Катушка при перемещении пересекает силовые линии магнитного поля, и в ней возникает э.д.с., пропорциональная скорости перемещения. Погрешности индукционных преобразователей определяются главным образом изменением магнитного поля с течением времени и при изменении температуры.

Основные достоинства индукционных преобразователей заключаются в сравнительной простоте конструкции, надежности работы и высокой чувствительности. Недостаток - ограниченный частотный диапазон измеряемых величин.

§ 15. Пьезоэлектрические преобразователи - основаны на использовании прямого пьезоэлектрического эффекта, заключающегося в появлении электрических зарядов на поверхности некоторых кристаллов (кварца, сегнетовой соли и др.) под влиянием механических напряжений. Из кристалла кварца вырезается пластинка, грани которой должны быть перпендикулярны оптической оси Oz, механической оси Oy и электрической оси Ox кристалла. При воздействии на пластину усилия Fx вдоль электрической оси на гранях x появляются заряды Qx = kFx,

где k- пьезоэлектрический коэффициент (модуль).

При воздействии на пластину усилия Fy вдоль механической оси на тех же гранях x возникают заряды Qy = - kFy a/b, где a и b - размеры граней пластины.

Механическое воздействие на пластину вдоль оптической оси не вызывает появления зарядов.

Н а рис показано устройство пьезоэлектрического преобразователя для измерения давления газа. Давление Р через металлическую мембрану 1 передается на зажатые между металлическими прокладками 2 кварцевые пластинки 3. Шарик 4 служит для равномерного распределения давления по поверхности кварцевых пластинок. Средняя прокладка соединена с выводом 5, проходящим через втулку из изоляционного материала.

При воздействии давления Р между выводом 5 и корпусом преобразователя возникает разность потенциалов

U = 2Q(CП + C0) = 2kSP/( CП + C0)

где Q – заряд, возникающий на пластинке кварца; C0 – ёмкость проводов и входной цепи прибора, измеряющего разность потенциалов, k – пьезоэлектрический модуль кварца; S – площадь поверхности мембраны подверженная давлению.

По разности потенциалов U судят о значении давления Р.

В пьезоэлектрических преобразователях главным образом применяют кварц, у которого пьезоэлектрические свойства сочетаются с высокой механической прочностью и высокими изоляционными качествами, а также с независимостью характеристик от температуры в широких пределах. Используется также поляризованная керамика из титаната бария (BaTiO3) Размеры пластин и их число выбирают исходя из конструктивных соображений и требуемого значения заряда.

Заряд, возникающий в пьезоэлектрическом преобразователе, «стекает» по изоляции и входной цепи измерительного прибора. Поэтому приборы, измеряющие разность потенциалов на преобразователе, должны иметь высокое входное сопротивление (1012 – 1015 Ом), что на практике обеспечивается применением электронных усилителей с высоким входным сопротивлением.

Из-за «стекания» заряда эти преобразователи используются только для измерения быстро изменяющихся величин (переменных усилий, давлений, вибраций, ускорений и т. д.)