Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
etalon_na_ekzamen_elektrotekhnika.doc
Скачиваний:
23
Добавлен:
18.08.2019
Размер:
298.5 Кб
Скачать

Билет 19

1. Выпрямитель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.

Большинство выпрямителей создаёт не постоянные, а пульсирующие однонаправленные напряжение и ток, для сглаживания пульсаций которых применяют фильтры.

Устройство, выполняющее обратную функцию — преобразование постоянных напряжения и тока в переменные напряжение и ток — называется инвертором.

2. Различают четыре схемы соединения обмоток (звезда-звезда, звезда-треугольник, треугольник-звезда, треугольник - треугольник). В электрических системах применяют три схемы; (звезда-звезда 12. звезда-треугольник 11, треугольник-звезда 1) Цифры 12,11 показывают группу соединения указанную в паспорте, которая определяется по углам сдвига фаз между векторами высшего и низшего напряжений. Как между минутной и часовой стрелкой.

Билет 20

1. Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол.Трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который провёл ряд экспериментов с асинхронным электродвигателем и выявил ряд преимуществ трехпроводной трёхфазной системы по отношению к другим системам. Трехфазная система Э.Д.С. создается трехфазными генераторами. В неподвижной части генератора (статоре) размещают три обмотки, сдвинутые в пространстве на 1200. Это фазные обмотки, или фазы, которые обозначают А,В,С, концы обмоток обозначают X,Y,Z. На вращающейся части генератора (роторе) располагают обмотку возбуждения, которая питается от источника постоянного тока. Так обмотки возбуждения создают магнитный поток Фо, постоянный (неподвижный) относительно ротора, но вращающийся вместе с частотой n. Вращение ротора осуществляется каким-либо двигателем.

При вращении ротора, вращающийся вместе с ним магнитный поток пересекает проводники обмотки статора (А-X, B-Y, C-Z) и индуцирует в них синусоидальные Э.Д.С. LA= Em sin Wt LB= Em sin (Wt - [pic]) LC= Em sin (Wt + [pic])

2. Для измерений больших значений токов применяют схемы включения амперметра через измерительные трансформаторы тока ( реле, токовых обмоток ваттметров и счетчиков). Для

безопасности прикосновения к приборам один зажим вторичной обмотки заземляют. В трансформаторах тока снижение погрешности достигается путем снижения тока для чего используют ленточный магнитопровод кольцевой формы из материала с малыми потерями.

Билет 21

  1. При изучении цепей постоянного тока мы установили, что все проводники обладают электрическим сопротивлением, на преодоление которого затрачивается определенное количество электрической энергии. В цепях переменного тока мы встречаемся с несколькими видами сопротивлений, различающихся своей физической природой. Все эти сопротивления можно подразделить на две

Условные обозначения основных элементов электрических цепей переменного тока

основные группы: активные и реактивные. В активных сопротивлениях при включении в цепь переменного тока электрическая энергия преобразуется в тепловую. Активным сопротивлением R обладают, например, провода электрических линий, обмотки электрических машин и аппаратов и пр., т. е. те же устройства, которые обладают электрическим сопротивлением в цепи постоянного тока. В реактивных сопротивлениях электрическая энергия, вырабатываемая источниками, не расходуется. Как будет показано ниже, при включении реактивного сопротивления в цепь переменного тока возникает лишь обмен энергией между ним и источником электрической энергии.

Реактивное сопротивление создают индуктивности и емкости. Под индуктивностью L будем понимать идеализированный элемент электрической цепи (идеализированную катушку индуктивности), способный запасать энергию в своем магнитном поле, который не имеет активного сопротивления R и емкости С. Аналогично под емкостью С будем понимать идеализированный элемент электрической цепи (идеализированный конденсатор), способный запасать энергию в своем электрическом поле, который не имеет активного сопротивления R и индуктивности L.

При проведении расчетов реальные катушки индуктивности и конденсаторы, в которых имеются потери мощности (из-за наличия активного сопротивления R), часто могут быть заменены с некоторым приближением этими идеализированными элементами, так как переменный ток, проходящий через реальную катушку индуктивности при заданном напряжении и частоте, определяется в основном ее индуктивностью L, а ток, проходящий через реальный конденсатор,—его емкостью С. На рис. 174, а—г стрелками показаны условные положительные направления в идеализированных элементах электрической цепи тока i, напряжения и и э. д. с.

2. Измерительный трансформатор— электрический трансформатор для контроля напряжения, тока или фазы сигнала первичной цепи. Измерительный трансформатор рассчитывается таким образом чтобы оказывать минимальное влияние на измеряемую (первичную) цепь; минимизировать искажения пропорции и фазы измеряемого сигнала в измерительной (вторичной) цепи. Трансформаторы напряжения бывают следующих видов:

  • заземляемый трансформатор напряжения — однофазный трансформатор напряжения, один конец первичной обмотки которого должен быть заземлен, или трехфазный трансформатор напряжения, нейтраль первичной обмотки которого должна быть заземлена;

  • незаземляемый трансформатор напряжения — трансформатор напряжения, у которого все части первичной обмотки, включая зажимы, изолированы от земли до уровня, соответствующего классу напряжения;

  • каскадный трансформатор напряжения — трансформатор напряжения, первичная обмотка которого разделена на несколько последовательно соединенных секций, передача мощности от которых к вторичным обмоткам осуществляется при помощи связующих и выравнивающих обмоток;

  • емкостный трансформатор напряжения — трансформатор напряжения, содержащий емкостный делитель;

  • двухобмоточный трансформатор напряжения — трансформатор напряжения, имеющий одну вторичную обмотку;

  • трехобмоточный трансформатор напряжения — трансформатор напряжения, имеющий две вторичные обмотки: основную и дополнительную.

По исполнению и применению трансформаторы тока бывают следующих видов:

  • встроенный трансформатор тока — трансформатор тока, первичной обмоткой которого служит ввод электротехнического устройства;

  • опорный трансформатор тока — трансформатор тока, предназначенный для установки на опорной плоскости;

  • проходной трансформатор тока — трансформатор тока, предназначенный для использования его в качестве ввода;

  • шинный трансформатор тока — трансформатор тока, первичной обмоткой которого служит одна или несколько параллельно включенных шин распределительного устройства (шинные трансформаторы тока имеют изоляцию, рассчитанную на наибольшее рабочее напряжение);

  • втулочный трансформатор тока — проходной шинный трансформатор тока;

  • разъемный трансформатор тока — трансформатор тока без первичной обмотки, магнитная цепь которого может размыкаться и затем замыкаться вокруг проводника с измеряемым током;

  • электроизмерительные клещи — переносный разъемный трансформатор тока.