Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции ОФСС(Лукиянчук).doc
Скачиваний:
20
Добавлен:
23.08.2019
Размер:
2.31 Mб
Скачать

3.5.5. Расчет сил сопротивления среды

Сила сопротивления среды зависит от вида среды, в которой перемещается транспортное средство. В общем случае транспортные средства перемещаются в двух средах: водной и воздушной.

Сопротивление перемещению транспортного средства в водной среде называется гидродинамическим сопротивлением. Гидродинамическое сопротивление вызвано касательными силами, обусловленными возникновением сил трения скольжения; силами, обусловленными давлением водной среды, зависящими от вязкостных свойств среды (сопротивление формы); силами, зависящими от волновых факторов. Эксперименты показали, что сила сопротивления движению судна определяется формулой

где коэффициент гидродинамического сопротивления;

плотность воды;

wскорость движения судна;

Sплощадь смоченной поверхности судна.

Сопротивление перемещению транспортного средства в воздушной среде называется аэродинамическим сопротивлением. Cила аэродинамического сопротивления зависит от свойств среды, форм элементов конструкции транспортного средства и скорости его перемещения. Так же, как и при движении в воде, сопротивление движению в воздухе складывается из сопротивления трению и сопротивления давлению, которое, в свою очередь, может проявляться как сопротивление формы и как волновое сопротивление.

Сопротивление трению связано с вязкостью воздуха, благодаря которой около поверхности движущегося тела создается пограничный слой, где происходит изменение скорости обтекаемого потока от нуля до максимального значения (рис. 3.8).

В пограничном слое можно выделить две зоны, соответствующие двум режимам течения: ламинарному, при котором отдельные слои (струйки) воздуха двигаются параллельно обтекаемой поверхности; турбулентному, при котором имеет место неупорядоченное движение отдельными вихрями с их непрерывным перемешиванием и перемещением не только вдоль потока, но и поперек.

В турбулентной области поверхности имеется тонкий ламинарный подслой, в котором и происходит изменение профиля скорости потока. В результате этого в турбулентном потоке имеет место большой градиент скорости и соответственно и сила трения при турбулентном обтекании в несколько раз больше, чем при ламинарном. Длина турбулентного участка на поверхности тела увеличивается с ростом скорости движения.

Рис. 3.8. Схема обтекания тела потоком

Сопротивление давлению возникает вследствие того, что среднее давление спереди тела превышает среднее давление позади него. Cопротивление давления равно разности этих средних давлений, умноженной на площадь так называемого миделевого сечения. Миделево сечение – сечение тела плоскостью, перпендикулярной направлению движения, взятое в том месте тела, где площадь сечения наибольшая.

В соответствии с теорией Н.Е. Жуковского полное аэродинамическое сопротивление равно

Здесь: cx – аэродинамический коэффициент лобового сопротивления; плотность воздуха; w – скорость движения воздушного судна; Sм – площадь миделевого сечения.

Рассмотрим примеры расчета сил сопротивления среды.

Задача № 1

Модернизированный вариант танкера характеризуется повышением максимальной массы перевозимого груза на 20%. Площадь смачиваемой поверхности танкера увеличилась на 15%, а скорость уменьшилась на 10%. Как изменилась сила гидродинамического сопротивления? (Коэффициент Cw практически не изменился, его можно принять постоянным для данного класса судов.)

Решение.

Введем обозначения: m1 – масса танкера с грузом до его модернизации; m2 – масса танкера с грузом после модернизации; S1, S2 – площадь смачиваемой поверхности танкера до и после модернизации соответственно; w1, w2 – скорость танкера до и после модернизации соответственно; Fc1, Fc2 – сила гидродинамического сопротивления танкера до и после модернизации соответственно. Требуется определить Fc2/Fc1 или

В соответствии с условием задачи можем записать: m2 = m1 + 0,2m1 = 1,2m1; S2 = S1 + 0,15S1 = 1,15S1; w2 = w1 – 0,1w1 = 0,9w1. На основании формулы получим После подстановки в эту формулу значений w2 и S2, выраженных через w1 и S1, получим

Отсюда Fc2 = 0,9315Fc1; Fc2<Fc1. Следовательно, сила гидродинамического сопротивления уменьшилась на

Задача № 2

Скорость полета самолета на высоте 500 м составляет 720 км/ч. Определить силу сопротивления крылу самолета, если площадь миделевого сечения крыла 1,7 м2, коэффициент лобового сопротивления 0,04, плотность воздуха на высоте 500 м составляет 1,167 кг/м3.

Решение.

Представим условие задачи в формализованном виде:

Определить Fаэр.

В формулу подставим соответствующие численные значения:

Задача № 3

Как следует изменить площадь миделевого сечения крыла (в условиях задачи №2), чтобы, не увеличивая тягу двигателя, увеличить скорость до 750 км/ч?

Решение.

Представим условие задачи в формализованном виде:

cx = 0,04; Sм1 = 1,7 м2; кг/м2; w = 750 км/ч; Fаэр = 1587 Н. Определить Sм и

Из формулы для Fаэр находим Подставим в эту формулу численные значения: м2. Тогда

м2.