Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовая работа Теплофизический расчет наружной...doc
Скачиваний:
25
Добавлен:
28.08.2019
Размер:
7.6 Mб
Скачать

4 Теплоустойчивость ограждений

Проверка теплоустойчивости ограждающих конструкций делается для районов со среднемесячной температурой июля tнVII 21 ºС и выше для наружных стен с тепловой инерцией D0 = ΣD менее 4 [3].

Проверка теплоустойчивости ограждений состоит в следующем:

.

Амплитуда колебаний температуры внутренней поверхности ограждающих конструкций жилых зданий не должна быть более требуемой амплитуды , ºС. Значения и определяются по формулам:

= 2,5 - 0,1 · (tнVII – 21), (4.1)

= , (4.2)

где – расчетная амплитуда колебаний температуры наружного воздуха, ºС;

– величина затухания расчетной амплитуды колебаний температуры наружного воздуха в ограждающей конструкции.

, (4.3)

здесь – коэффициент поглощения солнечной радиации материалом наружной поверхности ограждающей конструкции (приложение Л).

, (4.4)

где e = 2,718 – основание натуральных логарифмов;

Υ1, Υ2, …Υn-1, Υn – коэффициенты теплоусвоения наружной поверхности отдельных слоев ограждающей конструкции, Вт/(м2 ·ºС).

Для определения Υ следует предварительно вычислить тепловую инерцию D каждого слоя

D = R1S1 + R2S2 + … + RnSn.

Коэффициент теплоусвоения наружной поверхности слоя Υ, Вт/(м2 ·ºС), с тепловой инерцией D1 принимают равным расчетному коэффициенту теплоусвоения S материала этого слоя конструкции.

Коэффициент теплоусвоения наружной поверхности слоя Υ с тепловой инерцией D<1 следует определять расчетом, начиная с первого слоя (считая от внутренней поверхности ограждающей конструкции), следующим образом:

а) для первого слоя

; (4.5)

б) для -го слоя

. (4.6)

Коэффициент теплоотдачи наружной поверхности ограждающей конструкции по летним условиям αн , Вт/(м2 ·ºС), вычисляют по формуле

αн = 1,16 · (5+10 · ), (4.7)

где – минимальная из средних скоростей ветра по румбам за июль, повторяемость которых составляет 16% и более, принимаемая по приложению К, но не менее 1 м/с.

5 Влажностный режим многослойных строительных ограждающих конструкций

Главной причиной многочисленных повреждений, связанных с увлажнением конструкций здания, является в основном конденсация водяного пара. Спектр повреждений при этом простирается от небольшого образования плесени в углах помещений из-за пониженного термического сопротивления до полного увлажнения наружных стен. Для предотвращения конденсации водяного пара в наружных ограждениях необходимо, чтобы малопроницаемые слои располагались к внутренней поверхности ограждения, а более паропроницаемые слои – у наружной его поверхности.

В работах [1, 2] подробно описан процесс диффузии водяного пара. Причиной диффузии является разность парциальных давлений газов, входящих в состав воздуха. Между процессами диффузии газов и процессами теплопроводности имеется полная аналогия. Следовательно, все положения, на которых построены законы теплопроводности, вполне применимы для описания процессов диффузии.

Количество водяного пара, передаваемого путем диффузии в стационарных условиях через плоскую стенку согласно [2], определяется по формуле

, кг, (5.1)

где – масса диффундирующего пара, кг;

– упругости водяного пара с внутренней и наружной стороны ограждения, соответственно, Па;

– площадь стены, м2;

– время, ч;

– коэффициент паропроницаемости, мг/(м·ч·Па);

– толщина стены, м.

При диффузии водяного пара через слой материала последний оказывает сопротивление потоку пара. Это сопротивление называется сопротивлением паропроницанию, которое определяется по формуле

, (м2·ч·Па)/мг. (5.2)

Упругость водяного пара, диффундирующего через ограждение, понижается от величины до величины из-за сопротивления паропроницанию. При этом в ограждении, состоящем из одного материала, падение упругости водяного пара происходит по прямой линии. В слоистом ограждении линия падения упругости водяного пара является ломаной, причем более интенсивное падение происходит в слоях, состоящих из малопроницаемых материалов. Для построения линии упругости водяного пара в слоистом ограждении необходимы величины упругости водяного пара на границах слоев ограждения. Упругость водяного пара на границах слоев ограждения определяется по формуле

, Па, (5.3)

где – упругость водяного пара на внутренней поверхности n-го слоя ограждения, Па;

– сумма сопротивлений паропроницанию n – 1 слоев ограждения, считая от его внутренней поверхности, включая и сопротивление влагообмену .

Р ассмотренная выше методика расчета влажностного режима используется для описания процесса диффузии водяного пара при стационарных условиях. Расчет по определению конденсации влаги, согласно [2], производится графоаналитическим методом. Для этого в ограждении строится линия падения температуры. Далее по значениям температуры в сечениях определяются упругости насыщенного водяного пара (линия Е) и упругости водяного пара (линия е). Если линии Е и е не пересекаются, то конденсация водяного пара не происходит. Если же эти линии пересекаются, то это означает, что в ограждении возможна конденсация водяного пара.

Рис. 5.1 Графики изменения упругости водяного пара (е)

и упругости насыщенного водяного пара (Е) в толще ограждения

Согласно [3] допускается выпадение конденсата в ограждениях, а ограничивается лишь в них накопление влаги за годовой период эксплуатации здания и за период с отрицательными температурами. Поэтому при использовании графоаналитического метода возникает необходимость в графическом построении зоны возможной конденсации.

На основании вышеизложенного можно сделать вывод о том, что существующая методика расчета влажностного режима ограждающих конструкций довольна сложна и неудобна для практического применения.

В работе [4] был предложен новый инженерный метод расчета влажностного режима ограждающих конструкций – метод безразмерных характеристик.

Рассмотрим подробно данный метод.

Для этого условие отсутствия конденсации водяного пара в ограждающей конструкции математически сформулируем в виде неравенства

< , (5.4)

где – упругость водяного пара в ограждении, Па;

– упругость насыщенного водяного пара, Па, определяемая выражением

. (5.5)

Запишем неравенство (5.4) в безразмерном виде, вводя новые безразмерные переменные:

; , (5.6)

где – безразмерное сопротивление теплопередаче;

– безразмерное сопротивление паропроницанию;

– сопротивление теплопередаче ограждения до рассматриваемого сечения Х, (м2·ºС)/Вт;

– сопротивление теплопередаче глади ограждающей конструкции, (м2·ºС)/Вт;

– общее число слоев в строительной конструкции;

– число слоев до рассматриваемого сечения Х (m  n);

– сопротивление паропроницанию ограждающей конструкции.

Тогда неравенство (5.4) с учетом (5.6) примет следующий вид:

; > 0, (5.7)

где – значение безразмерного сопротивления паропроницанию для состояния полного насыщения влажного воздуха водяным паром:

, (5.8)

где .

Формула (5.7) представляет собой математическую формулировку условия отсутствия конденсации водяного пара в ограждающих конструкциях, представленную в безразмерной форме.

На рис. 5.2 представлена зависимость для определенных значений величин и область решения рассматриваемой задачи.

Рис. 5.2 Зависимость

Укажем последовательность выполнения расчета влажностного режима ограждающих конструкций с помощью метода безразмерных характеристик.

  1. Определяются значения сопротивлений паропроницанию Rni и термических сопротивлений отдельных слоев Ri, входящих в строительную конструкцию.

  2. По формулам (5.6) вычисляются значения безразмерных переменных Xi, Yi на границах слоев.

  3. Для найденных значений Xi (i=1,2...n) определяются значения Yнi по формуле (5.8).

  4. Проверяется выполнение неравенства (2.7) на границах слоев ограждения:

Yi>Yнi ; i=1,2...n. (5.9)

  1. Если неравенство (5.9) выполняется, то конденсат в ограждении в зимний период выпадать не будет, и расчет на этом заканчивается.

  2. Если неравенство (5.9) не выполняется, то требуется определить положение плоскости конденсации водяного пара. Для этого исследуем функцию на экстремум, полагая

. (5.10)

После дифференцирования получим трансцендентное уравнение следующего вида:

. (5.11)

Корнем данного трансцендентного уравнения является безразмерная координата, определяющая положение плоскости возможной конденсации водяного пара в строительной конструкции. Уравнение (5.11) решаем численным методом с помощью ПЭВМ.

Величина требуемого сопротивления пароизоляции определяется выражением

. (5.12)

В большинстве случаев плоскостью возможной конденсации водяного пара является наружная поверхность утеплителя. Поэтому значения Yнi и , используемые в формуле (5.12), следует определять для наружной поверхности теплоизоляции.

Для численной реализации метода безразмерных характеристик был разработан программный комплекс «Диффузия».

Рис. 5.3 Результаты расчета влажностного режима наружной стены:

----- – без пароизоляции;

-◦-◦-◦ – с пароизоляцией

В качестве примера приведем результаты расчета влажностного режима наружной стены из силикатного кирпича толщиной δ1=0,51 м, утеплённой изнутри пенополистиролом толщиной δ2=0,04 м и защищённой гипсокартоном δ3=0,0305 м. Как видно из рис. 5.3, после нанесения слоя пароизоляции со стороны внутренней поверхности утеплителя в виде полиэтиленовой плёнки толщиной 0,32 мм, накопление влаги в стене происходить не будет.

Однако, как показал опыт эксплуатации наружных стен, утепленных изнутри пенополистиролом, полностью избежать накопления влаги в стене не всегда удается. Это связано с возможными нарушениями пароизоляции в процессе строительства и эксплуатации здания. Поэтому данный вид утепления стен используется весьма редко.

Приведенный выше метод безразмерных характеристик предусматривает разработку программы для персонального компьютера.

Рассмотрим сущность аналитического метода определения положения плоскости возможной конденсации, предназначенного для ручного счета [8]. Он базируется на основных положениях, рассмотренных в методе безразмерных характеристик. Положение плоскости возможной конденсации определяется в результате решения уравнения (5.11) численным методом. Укажем более простой путь решения рассматриваемой задачи, используя значение температуры в плоскости возможной конденсации, определяемое по формуле

, (5.13)

где – сопротивление теплообмену с внутренней поверхности ограждения, (м2·ºС)/Вт;

– сумма термических сопротивлений между внутренней поверхностью и плоскостью возможной конденсации, (м2·ºС)/Вт.

Формула (5.13) с учетом выражения для безразмерного сопротивления теплопередаче примет вид

. (5.14)

Преобразуем трансцендентное уравнение (1.36) путем введения в качестве искомой величины температуры в плоскости возможной конденсации, определяемой по формуле (5.14). Тогда получим:

, (5.15)

где – комплекс, зависящий только от температуры в плоскости возможной конденсации, ºС2/Па:

; .

Для определения значения температуры tki рекомендуется использовать таблицу 5.1.

Таблица 5.1

Значения комплекса

tki,

ºC

, ºС2/Па

tki,

ºC

, ºС2/Па

tki,

ºC

, ºС2/Па

tki,

ºC

, ºС2/Па

-30

-29

-28

-27

-26

-25

-24

-23

-22

-21

-20

-19

-18

1117

1020,2

920,5

856,5

773,7

706,7

651,4

589,2

538,8

497,0

453,0

416,7

380,2

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

350,0

320,5

296,0

272,3

249,9

231,2

213,6

196,5

181,4

167,7

155,2

143,4

132,7

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

123,2

114,1

105,9

98,1

91,16

85,5

80,2

75,3

70,8

66,6

62,8

59,0

55,6

9

10

11

12

13

14

15

16

17

18

19

20

52,3

49,2

46,5

43,84

41,4

39,1

36,95

34,93

33,05

31,3

29,6

28,03

Расчет по нахождению плоскости возможной конденсации следует выполнить в следующей последовательности.

  1. Определяется сопротивление теплопередаче ограждающей конструкции:

, (м2ּºС)/Вт. (5.16)

  1. Находится сопротивление паропроницанию ограждающей конструкции:

; , (м2ּчּПа)/мг. (5.17)

  1. Согласно [5] принимаются значения температуры tв и относительной влажности φв внутреннего воздуха в помещении.

  2. Определяется значение упругости внутреннего воздуха ев по формуле

, (5.18)

где Ев – упругость насыщенного водяного пара при температуре tв, Па, определяемая по таблицам 5.2, 5.3.

  1. По приложению К находятся значения температуры tн и упругости ен наружного воздуха для наиболее холодного месяца.

  2. По формуле (5.15) определяются значения комплекса для всех слоев рассматриваемой ограждающей конструкции.

  3. С помощью таблицы 5.1 находятся значения температуры в плоскости возможной конденсации.

Таблица 5.2

Значения парциального давления насыщенного водяного пара E, Па, для различных значений температур при В=100,7 кПа

t, ºС

E

t, ºС

E

t, ºС

E

t, ºС

E

t, ºС

E

0

611

-5,4

388

-10,6

245

-16

151

-23

77

-0,2

601

-5,6

381

-10,8

241

-16,2

148

-35,5

73

-0,4

592

-5,8

375

-11

237

-16,4

145

-24

69

-0,6

581

-6

369

-11,2

233

-16,6

143

-24,5

65

-0,8

573

-6,2

363

-11,4

229

-16,8

140

-25

63

-1

563

-6,4

356

-11,6

225

-17

137

-25,5

60

-1,2

553

-6,6

351

-11,8

221

-17,2

135

-26

57

-1,4

544

-6,8

344

-12

217

-17,4

132

-26,5

53

-1,6

535

-7

338

-12,2

213

-17,6

129

-27

51

-1,8

527

-7,2

332

-12,4

209

-17,8

128

-27,5

48

-2

517

-7,4

327

-12,6

207

-18

125

-28

47

-2,2

509

-7,6

321

-12,8

203

-18,2

123

-28,5

44

-2,4

400

-7,8

315

-13

199

-18,4

120

-29

42

-2,6

492

-8

310

-13,2

195

-18,6

117

-29,5

39

-2,8

484

-8,2

304

-13,4

191

-18,8

116

-

-

-3

476

-8,4

299

-13,6

188

-19

113

-30

38

-3,2

468

-8,6

293

-13,8

184

-19,2

111

-31

34

-3,4

460

-8,8

289

-14

181

-19,4

109

-32

34

-3,6

452

-9

284

-14,2

179

-19,6

107

-33

27

-3,8

445

-9,2

279

-14,4

175

-19,8

105

-34

25

-4

437

-9,4

273

-14,6

172

-

-

-35

22

-4,2

429

-9,6

268

-14,8

168

-20

103

-36

20

-4,4

423

-9,8

264

-15

165

-20,5

99

-37

18

-4,6

415

-

-

-15,2

163

-21

93

-38

16

-4,8

408

-10

260

-15,4

159

-21,5

89

-39

14

-5

402

-10,2

260

-15,6

159

-22

85

-40

12

-5,2

395

-10,4

251

-15,8

153

-22,5

81

-41

11

Таблица 5.3

Значения парциального давления насыщенного водяного пара E, Па, для температуры t от 0 до +30 ºС (над водой)

t, ºС

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0

611

615

620

624

629

633

639

643

648

652

1

657

661

667

671

676

681

687

691

696

701

2

705

711

716

721

727

732

737

743

748

753

3

759

764

769

775

780

785

791

796

803

808

4

813

819

825

831

836

843

848

855

860

867

5

872

879

885

891

897

904

909

916

923

929

6

935

941

948

956

961

968

975

981

988

995

7

1001

1009

1016

1023

1029

1037

1044

1051

1059

1065

8

1072

1080

1088

1095

1103

1109

1117

1125

1132

1140

9

1148

1156

1164

1172

1180

1188

1196

1204

1212

1220

10

1228

1236

1244

1253

1261

1269

1279

1287

1285

1304

11

1312

1321

1331

1339

1348

1355

1365

1375

1384

1323

12

1403

1412

1421

1431

1440

1449

1459

1468

1479

1488

13

1497

1508

1517

1527

1537

1547

1557

1568

1577

1588

14

1599

1609

1619

1629

1640

1651

1661

1672

1683

1695

15

1705

1716

1727

1739

1749

1761

1772

1784

1795

1807

16

1817

1829

1841

1853

1865

1877

1889

1901

1913

1925

17

1937

1949

1962

1974

1986

2000

2012

2025

2037

2050

18

2064

2077

2089

2102

2115

2129

2142

2156

2169

2182

19

2197

2210

2225

2238

2252

2266

2281

2294

2309

2324

20

2338

2352

2366

2381

2396

2412

2426

2441

2456

2471

21

2488

2502

2517

2538

2542

2564

2580

2596

2612

2628

22

2644

2660

2676

2691

2709

2725

2742

2758

2776

2792

23

2809

2826

2842

2860

2877

2894

2913

2930

2948

2965

24

2984

3001

3020

3038

3056

3074

3093

3112

3130

3149

25

3168

3186

3205

3224

3244

3262

3282

3301

3321

3341

26

3363

3381

3401

3421

3441

3461

3481

3502

3523

3544

27

3567

3586

3608

3628

3649

3672

3692

3714

3796

3758

28

3782

3801

3824

4846

3869

3890

3913

3937

3960

3982

29

4005

4029

4052

4076

4100

4122

4146

4170

4194

4218

30

4246

4268

4292

4317

4341

4366

4390

4416

4441

4466

  1. С помощью уравнения (5.13) определяется координата плоскости возможной конденсации для каждого слоя ограждающей конструкции. В том случае, если значение координаты выходит существенно за пределы слоя, расчет по накоплению влаги в данном слое не выполняется. При незначительном отличии температуры от tki за плоскость возможной конденсации принимается наружная поверхность рассматриваемого слоя.

  2. После определения плоскости возможной конденсации выполняется расчет накопления влаги, как за годовой период эксплуатации здания, так и за период с отрицательными температурами, руководствуясь методикой, изложенной в [3].

Далее производят проверку влажностного режима конструкции в нестационарных условиях.

Сопротивление паропроницанию Rп, (м2·ч·Па)/мг, ограждающей конструкции (в пределах от внутренней поверхности до плоскости возможной конденсации) должно быть не менее наибольшего из следующих требуемых сопротивлений паропроницанию:

а) требуемого сопротивления паропроницанию , (м2·ч·Па)/мг (из условия недопустимости накопления влаги в ограждающей конструкции за годовой период эксплуатации), определяемого по формуле

; (5.19)

б) требуемого сопротивления паропроницанию , (м2·ч·Па)/мг (из условия ограничения влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами наружного воздуха), определяемого по формуле

. (5.20)

В формулах (5.19) и (5.20):

eв – упругость водяного пара внутреннего воздуха, Па, при расчетной температуре и влажности этого воздуха;

Rп.н. – сопротивление паропроницанию, (м2·ч·Па)/мг, части ограждающей конструкции, расположенной между наружной поверхностью ограждающей конструкции и плоскостью возможной конденсации;

eн – средняя упругость водяного пара наружного воздуха, Па, за годовой период, определяемая по приложению К;

z0 – продолжительность, сут, периода влагонакопления, принимаемая равной периоду с отрицательными среднемесячными температурами наружного воздуха по приложению К;

Е0 – упругость водяного пара, Па, в плоскости возможной конденсации, определяемая при средней температуре наружного воздуха периода месяцев с отрицательными среднемесячными температурами;

ρw – плотность материала увлажняемого слоя, кг/м3, принимаемая равной ρ0 по приложению Д;

δw – толщина увлажняемого слоя ограждающей конструкции, м, принимаемая равной 2/3 толщины однородной (однослойной) стены или толщине теплоизоляционного слоя (утеплителя) многослойной ограждающей конструкции;

Δwср – предельно допустимое приращение расчетного массового отношения влаги в материале увлажняемого слоя, %, за период влагонакопления z0, принимаемое по таблице 5.4;

Таблица 5.4

Значение предельно допустимого приращения расчетного массового отношения влаги в материале

Материал ограждающей конструкции

Предельно допустимое приращение расчетного массового отношения влаги в материале Δwср, %

1. Кладка из глиняного кирпича и керамических блоков

2. Кладка из силикатного кирпича

3. Легкие бетоны на пористых заполнителях (керамзитобетон, шунгизитобетон, перлитобетон, пемзобетон и др.)

1,5

2,0

5,0

4. Ячеистые бетоны (газобетон, пенобетон, газосиликат и др.)

5. Пеногазостекло

6. Фибролит цементный

7. Минераловатные плиты и маты

8. Пенополистирол и пенополиуретан

9. Теплоизоляционные засыпки из керамзита, шунгизита, шлака

10. Тяжелые бетоны

6,0

1,5

7,5

3,0

25,0

3,0

2,0

Е – упругость водяного пара, Па, в плоскости возможной конденсации за годовой период эксплуатации, определяемая по формуле

. (5.21)

где Е1, Е2, Е3 – упругости водяного пара, Па, принимаемые по температуре в плоскости возможной конденсации, определяемой при средней температуре наружного воздуха соответственно зимнего, весенне-осеннего и летнего периодов;

z1, z2, z3 – продолжительность, мес., зимнего, весенне-осеннего и летнего периодов, определяемая по приложению К с учетом следующих условий:

а) к зимнему периоду относятся месяцы со средними температурами наружного воздуха ниже минус 5 ºС;

б) к весенне-осеннему периоду относятся месяцы со средними температурами наружного воздуха от минус 5 до плюс 5 ºС;

в) к летнему периоду относятся месяцы со средними температурами наружного воздуха выше плюс 5 ºС;

η – определяется по формуле

, (5.22)

где ен.о. – средняя упругость водяного пара наружного воздуха, Па, периода месяцев с отрицательными среднемесячными температурами, определяемая по приложению К.

Примечания.

1. Упругости Е1, Е2, Е3 и Е0 для конструкций помещений с агрессивной средой следует принимать с учетом агрессивной среды.

2. При определении упругости Е3 для летнего периода температуру в плоскости возможной конденсации во всех случаях следует принимать не ниже средней температуры наружного воздуха летнего периода, упругость водяного пара внутреннего воздуха eв – не ниже средней упругости водяного пара наружного воздуха за этот период.

3. Плоскость возможной конденсации в однородной (однослойной) ограждающей конструкции располагается на расстоянии, равном 2/3 толщины конструкции от ее внутренней поверхности, а в многослойной конструкции совпадает с наружной поверхностью утеплителя.