Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мой диплом (Приобка).doc
Скачиваний:
15
Добавлен:
14.09.2019
Размер:
5.11 Mб
Скачать

3.2 Динамика показателей разработки и фонда скважин

Таблица 3.3 - Динамика основных показателей разработки правобережной части Приобского месторождения за 2000 год.

Рисунок 3.1 – Динамика добычи жидкости и нефти

Рисунок 3.2 – Динамика изменения среднего дебита по действующим скважинам

Рисунок 3.3 – Динамика фонда добывающих скважин

Рисунок 3.4 – Динамика изменения добывающего и нагнетательного фонда

3.3 Осложнения при эксплуатации скважин

Одной из причин бездействия скважин Приобского месторождения являются аварийные ситуации, связанные с полетами на забой скважин насосов, НКТ и прочего скважинного оборудования в результате обрыва колонны насосно-компрессорных труб при проведении подземного или капитального ремонта скважин (как правило, в процессе спуско-подъемных операций). На этих скважинах, при наличии в их районе остаточных запасов нефти, запланировано проведение ловильных работ. На части из этих скважин проведение работ по извлечению упавшего оборудования оказалось безуспешным. Методология работы с такими скважинами заключается в следующем:

  • при наличии остаточных запасов нефти в районе данной скважины – проведение операции по зарезке второго ствола (ЗВС) в направлении наибольшей концентрации остаточных запасов нефти (величина ОИЗ по данному объекту должна быть достаточной, чтобы за счет последующей добычи нефти затраты на проведение ЗВС окупились); на части таких скважин целесообразно проведение работ по зарезке горизонтальных стволов;

  • при отсутствии ОИЗ, достаточных, чтобы окупить работы по ЗВС, - перевод скважин на вышезалегающие объекты либо зарезка второго ствола на нижезалегающие пласты (выбирается наиболее экономически выгодный вариант);

  • если в продуктивном разрезе скважины нет потенциальных объектов для проведения вышеупомянутых работ – скважина должна быть ликвидирована.

Причиной бездействия скважин являются различные неисправности наземного оборудования (порыв водовода, неисправность устьевой арматуры).

Основными направлениями по работе с фондом скважин на месторождении должны стать:

  1. сокращение неработающего фонда путем планирования и осуществления адресных мероприятий по бездействующим скважинам (улучшение выработки остаточных запасов, восстановление системы разработки, учет многопластового характера месторождения);

  2. оптимизация эксплуатации действующего фонда (выбор оптимальных режимов работы скважинного оборудования и пласта, воздействие на призабойную зону и пласт с целью снижения обводненности продукции, комплексное сочетание ремонтных работ и воздействия на пласт);

  3. широкое внедрение новых технологий, позволяющих повысить эффективность использования фонда (зарезка дополнительных горизонтальных стволов, внедрение в больших объемах потокоотклоняющих МУН).

3.3.1 Пескообразование

Процесс пескообразования при эксплуатации нефтяных скважин вы­зывается рядом причин, например, наличием слабосцементированных по­род-коллекторов, слабой устойчивостью коллекторских пород фильтрационному размыву, что обуславливает разрушение скелета пласта и поступ­ление частиц песка и глинистых пород на забой скважины .

Пескообразование приводит к значительным осложнениям в ходе эксплуатации добывающих скважин: частично или полностью перекрыва­ется фильтр скважины и снижается ее производительность, выносимые частицы песка способны вызвать заклинивание рабочего колеса в корпусе ЭЦН , прихват подз­емных труб , деформацию колонн и другие последствия , требующие продолжительной и трудоемкой работы бригад текущего и капитального ре­монтов . При этом уменьшается межремонтный период работы скважины , увеличивается себестоимость добываемой нефти и ее недобор , связанный с ремонтными работами. Следствием выноса песка является и отложение песка в наземном оборудовании , трубопроводах .

В настоящее время 159 нефтяных скважин (более 36 % эксплуатационно­го фонда) Приобского месторождения эксплуатиру­ются с повышенным содержанием мехпримесей в добываемой продукции, количество которых колеблется в широком диапазоне от 0.028 до 23.182 г/л . И это является причиной отказа ЭЦН в 16 % всех поломок.

В зависимости от геолого-физических характеристик нефтяных пла­стов , способа эксплуатации добывающих скважин следует отметить ряд особенностей в распределении осложненньх объектов:

- из общего числа скважин с повышенным выносом мехпримесей 44.0 % приходится на продукцию пласта АС12, 23.3 % - на продукцию пласта АС10, 10.7 % - на продукцию пласта АС11, 22.0 % - на скважины совместно эксплуатирующие выше­перечисленные пласты . Однако , относительно численности скважин ЭЦН раз­дельно или совместно эксплуатирующих нефтяные горизонты это распре­деление выглядит несколько иначе: 48.7 % скважин эксплуатирующих пласт АС10 осложнено повышенным пескопроявлением , для пластов АС12 и АС11 эта величина составляет 38.7 и 29.8 % , соответственно; 29,4 % скважин совместно эксплуатирующих вышеперечисленные пласты ослож­нены пескопроявлением .

- анализ динамики выноса мехпримесей из выделенных в отдельную выборку 36 добывающих скважин , на которых проведен гидроразръгв пла­ста и имеются сопоставимые с датой гидроразрыва сведения о количестве выносимых из пласта мехпримесей , показывает, что в результате ГРП на 26 скважинах (72.2 %) наблюдалось увеличение КВЧ, на остальных 10 скважинах (27.8 %) данного явления не отмечено. В результате проведе­ния ГРП наблюдался один (на 15 скважинах – 57.7 %) , либо два (на 11 скважинах – 42.3 %) максимума в изменении количества выносимых мех-примесей. Причем на большинстве - 16 скважинах (61.5 %) максимальный вынос мехпримесей наблюдался через 1 месяц после воздействия на пласт , на 6 скважинах (23.1 %) этот период составил 2-3 месяца , на остальных объектах - 4-6 месяцев .

На вынос механических примесей существенно влияет нестационар­ность параметров эксплуатации скважин : изменение притока жидкости из пласта в скважину и , как следствие , изменение в ее дебите ; простои в ра­боте скважины , вызванные кратковременным отключением электроэнер­гии , проведением ПРС и другими причинами. Зачастую вынос мех примесей связан и с неудовлетворительной подготовкой скважины к освоению после проведения капитального ремонта.

На рисунках 3.6 – 3.9 представлены зависимости изменения во време­ни дебита и содержания мехпримесей в добываемой продукции для сква­жин, на которых был проведен ГРП рисунки 3.6; 3.7 , либо нет, рисунки 3.8; 3.9 .

Полученные результаты указывают на имеющуюся взаимосвязь ко­личества выносимых из скважины мехпримесей с ее дебитом : увеличение дебита , как правило , приводит и к росту содержания мехпримесей в выно­симой скважинной продукции. Так как данное явление свойственно не только скважинам на которых проведен ГРП , так и тем, где гидроразрыв не проводился, то это указывает на то, что вынос песка в большей степени связан с геологическим строением продуктивных пластов, сложенных сла­босцементированными коллекторами. Следует отметить, что из скважин, где проведен гидроразрыв, в среднем выносится в несколько раз больше взвешенных частиц, чем из тех, на которых гидроразрыв не проводился, ибо под воздействием гидроразрыва нарушается устойчивость пород-коллекторов, что приводит к росту содержания мехпримесей в добывае­мой скважинной продукции .

Запуск и вывод скважин на режим после простоя также сопровожда­ется кратковременным увеличением содержания мехпримесей в добывае­мой скважинной продукции, что связано с увеличением де­прессии на пласт. Исходя из этого, что увеличение содержания мехпримесей в добываемой продукции свыше 0,05 % приводит к эрозионному износу металлической поверхности нефтепромыслового оборудования и трубопроводных коммуникаций, для добывающих скважин Приобского месторождения желательно ограничить вынос мехпримесей уровнем 432-434 мг/л .

Таким образом, к основным причинам повышенного выноса мех­примесей из пластов Приобского месторождения следует отнести:

- наличие слабосцементированных пород-коллекторов неустойчивых к фильтрационному размыву;

- значительный масштаб работ по гидроразрывам нефтяных пластов. нарушающим целостность породы;

- нестабильные режимы эксплуатации добывающих скважин.

Для повышения надежности предлагается конструкция ЭЦН с завихрителем, обеспечивающим круговое движение потока и , тем самым , из-за разности плотностей мехпримесей и жидкой фазы под действием центробежной силы , отделение мехпримесей от перекачиваемой продукции. Очистка продукции от мехпримесей позволит повысить теплоемкость и теплопроводность перекачиваемой жидкости , что способствует увеличению теплоотвода от электродвигателя и повышению надежности насосного агрегата в целом и за счет снижения абразивного износа узлов агрегата.