Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
всё кроме 7.docx
Скачиваний:
2
Добавлен:
14.09.2019
Размер:
147.67 Кб
Скачать

18. Генеральная совокупность – это совокупность всех мысленных наблюдений (или всех мыслимо возможных объектов), которые могут быть проведены при данном реальном комплексе условий.

Понятие ГС – это абстрактное математическое понятие. ГС может быть конечной или бесконечной.

Выборка из данной ГС представляет собой результат ограниченного ряда наблюдений интересующего нас показателя (признака, переменной). ГС всегда больше, чем выборка. В статистике выборка обозначается х1, х2, …, хn количество наблюдений n. Количество наблюдений – «n»- называется объемом выборки. Выборки разделяются на повторные (с возвращением) и бесповторные (без возвращения).

Обычно осуществляются бесповторные выборки, но благодаря большому (бесконечному) объему генеральной совокупности ведутся расчеты и делаются выводы, справедливые лишь для повторных выборок.

Выборка должна достаточно полно отражать особенности всех объектов генеральной совокупности, иначе говоря, выборка должна быть репрезентативной (представительной).

Выборки различаются по способу отбора.

1. Простой случайный отбор.

2. Типический отбор.

3. Механический отбор.

4. Серийный отбор.

В дальнейшем под генеральной совокупностью мы будем подразумевать не само множество объектов, а множество значений случайной величины, принимающей числовое значение на каждом из объектов.

19. Вариационный ряд.

Пусть для объектов генеральной совокупности определен некоторый признак или числовая характеристика, которую можно замерить (размер детали, удельное количество нитратов в дыне, шум работы двигателя). Эта характеристика – случайная величина , принимающая на каждом объекте определенное числовое значение. Из выборки объема n получаем значения этой случайной величины в виде ряда из n чисел:

x1, x2,..., xn. (*)

Эти числа называются значениями признака.

Среди чисел ряда (*) могут быть одинаковые числа. Если значения признака упорядочить, то есть расположить в порядке возрастания или убывания, написав каждое значение лишь один раз, а затем под каждым значением xi признака написать число mi, показывающее сколько раз данное значение встречается в ряду (*):

x1 x2 x3 ... xk

m1 m2 m3 ... mk

то получится таблица, называемая дискретным вариационным рядом. Число mi называется частотой i-го значения признака.

Очевидно, что xi в ряду (*) может не совпадать с xi в вариационном ряду. Очевидна также справедливость равенств

Вариационным (статистическим) рядом называется таблица, первая строка которой содержит в порядке возрастания элементы ', а вторая - их частоты (относительные частоты .

20. Организация эксперимента - это разработка плана проведения экспериментов, который дает возможность за минимальное число прогонов модели и при минимальной стоимости работ сделать стати-стически значимые выводы или найти наилучшее решение. При орга-низации эксперимента обычно определяют:

- входные данные для каждого эксперимента;

- количество прогонов имитационной модели;

- длительность одного прогона модели;

- длительность переходного процесса моделирования, после которого необходимо собирать выходные данные;

- стратегию сбора данных для каждого прогона модели;

- методы оценки точности выходных данных с построением доверительных интервалов;

- чувствительность модели к входным данным, различным ви¬дам распределений, сценариям поведения моделируемой системы;

- условия эксперимента и сценарии;

- условия генерации потоков случайных чисел внутри системы моделирования и для вероятностных входных данных;

- стратегию достижения цели эксперимента (например, сравне¬ние альтернативных вариантов или оптимизация целевой функции).

21. Стандартное отклонение, среднеквадратичное отклонение, СКО, выборочное стандартное отклонение — очень распространенный показатель рассеяния в описательной статистике. Но, т.к. технический анализсродни статистике, данный показатель можно (и нужно) использовать в техническом анализе для обнаружения степени рассеяния цены анализируемого инструмента во времени. Обозначается греческим символом Сигма “σ”.

Применение стандартного отклонения

Для любого индикатора нам понадобиться переменная, т.е. параметр. В данном случае нам нужен только период n, который указывает, какое количество периодов мы будем включать в вычисление стандартного отклонения.

Для вычисления, мы берем данные закрытия из n периодов назад от последней доступной цены. Т.е. если мы установили период индикатора 20 (достаточно часто используемый период),то мы берем 20 последних данных и оперируем ними для вычисления стандартного отклонения сегодня. Следовательно, для вычисления стандартного отклонения в любой момент времени k, надо взять цены закрытия всех n периодов назад от k.

Пошагово вычисление стандартного отклонения:

1. вычисляем среднее арифметическое выборки данных

2. отнимаем это среднее от каждого элемента выборки

3. все полученные разницы возводим в квадрат

4. суммируем все полученные квадраты

5. делим полученную сумму на количество элементов в выборке (или на n-1, если n>30)

6. вычисляем квадратный корень из полученного частного (именуемого дисперсией)

22. ДИСПЕРСИЯ (от лат . dispersio - рассеяние) в математической статистике и теории вероятностей, мера рассеивания (отклонения от среднего). В статистике дисперсия есть среднее арифметическое из квадратов отклонений наблюденных значений (x1, x2,...,xn) случайной величины от их среднего арифметического В теории вероятностей дисперсия случайной величины - математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

Свойства дисперсии

1. Если все значения признака уменьшить (увеличить) на одну и ту же постоянную величину, то дисперсия от этого не изменится.

2. Если все значения признака уменьшить (увеличить) в одно и то же число раз n, то дисперсия соответственно уменьшится (увеличить) в n^2 раз.

23. Корреля́ция  (корреляционная зависимость) — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин

24. Математи́ческое ожида́ние — понятие среднего значения случайной величины в теории вероятностей. Обозначается или иногда (в русской литературе). В статистике часто используют обозначение μ. Основные формулы для математического ожидания Если FX(x) — функция распределения случайной величины, то её математическое ожидание задаётся интегралом Лебега — Стилтьеса:

Свойства математического ожидания

1) Математическое ожидание постоянной величины равно самой постоянной.

2) Постоянный множитель можно выносить за знак математического ожидания.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий. Это свойство справедливо для произвольного числа случайных величин.

4) Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых. Это свойство также справедливо для произвольного числа случайных величин.

Пусть производится п независимых испытаний, вероятность появления события А в которых равна р. Теорема. Математическое ожидание М(Х) числа появления события А в п независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании. Однако, математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания. Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.