Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
статист.docx
Скачиваний:
3
Добавлен:
15.09.2019
Размер:
195.18 Кб
Скачать

Свойства средней арифметической:

1. Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты. Другими словами, постоянный множитель может быть вынесен за знак средней.

2. Если от каждой варианты отнять (прибавить) какое-либо произвольное число, то новая средняя уменьшится (увеличится) на то же число:

3. Если каждую варианту умножить (разделить) на какое-то произвольное число, то средняя арифметическая увеличится (уменьшится) во столько раз

4. Если все частоты (веса) разделить или умножить на какое-либо число, то средняя арифметическая от этого не изменится. Дело в том, что веса при исчислении средней арифметической выполняют рольудельного веса (соотношений между группами по количеству единиц). Поэтому замена частот частостями не меняет значения средней.

5. Сумма отклонений отдельных вариантов от средней арифметической всегда равняется нулю.

Перечисленные свойства могут быть использованы для того, чтобы облегчить технику исчисления средней арифметической.

Например. Можно из всех значений признака вычесть произвольную постоянную величину (лучше значение серединной варианты или варианты с наибольшей частотой), полученные разности сократить на общий множитель (лучше на величину интервала), а частоты выразить частостями (в процентах) и исчисленную среднюю умножить на общий множитель и прибавить произвольную постоянную величину. Иногда этот способ расчета средней арифметической также называется способом расчета от условного нуля. Широкое применение для обработки статистических материалов современных ЭВМ сужает необходимость исчисления средних по упрощенным схемам.

 10.

Какова формула расчета среднего геометрического? Какова формула  расчета среднего геометрического взвешенного? Где применяется среднее геометрическое? Приведите пример.

Среднегеометрическая величина дает возможность сохранять в неизменном виде не сумму, а произведение индивидуальных значений данной величины. Среднее геометрическое используют прежде всего тогда, когда среднее значение вычисляют для значений, заданных через некоторые равные промежутки времени (рост или снижение успеваемости, заработной платы, вклада в банке за несколько лет). Среднее геометрическое применяют тогда, когда переменная с течением времени изменяется примерно с одинаковым соотношением между измерениями. Среднее геометрическое применяют также тогда, когда отдельные значения в статистической совокупности удалены от других значений; это меньше влияет на среднее геометрическое по сравнению со средним арифметическим, а потому дает более правильное представление о среднем.

Среднегеометрические величины наиболее часто используются при анализе темпов роста экономических показателей.

Для расчетов средней геометрической простой используется формула:

Для определения средней геометрической взвешенной применяется формула:

11.

Какова формула расчета среднего гармонического? Какова формула  расчета среднего гармонического взвешенного? Где применяется среднее гармоническое? Приведите пример.

Среднее гармоническое необходимо в том случае, когда наблюдения, для которых мы хотим получить среднее арифметическое, заданы обратными значениями.

Среднегармоническую величину можно определить по следующей формуле:

Среднегармоническую взвешенную величину можно определить по следующей формуле:

 

12.

Какова формула расчета среднего квадратического? Какова формула  расчета среднего квадратического взвешенного? Где применяется среднее квадратическое? Приведите пример.

 

Среднее степенное второго порядка называют средним квадратичным, его используют при вычислении среднего квадратичного отклонения. Эти величины точно характеризуют изменение экономических показателей по сравнению с их базисной величиной, взятое в его усредненной величине.

 

Средняя квадратическая простая вычисляется по формуле:

 

Средняя квадратическая взвешенная равна:

 

13.

Вариа́ция — различие значений какого-либо признака у разных единиц совокупности за один и тот же промежуток времени. Причиной возникновения вариации являются различные условия существования разных единиц совокупности. Вариация — необходимое условие существования и развития массовых явлений. Определение вариации необходимо при организациивыборочного наблюдения, статистическом моделировании и планировании экспертных опросов. По степени вариации можно судить об однородности совокупности, устойчивости значений признака, типичности средней, о взаимосвязи между какими-либо признаками.

Показатели вариации

Абсолютные показатели

  • размах вариации:;

  • среднее линейное отклонение:;

  • среднеквадратическое отклонение:;

  • дисперсия:;

  • среднее квартильноерасстояние:.

Относительные показатели

  • относительный размах вариации (коэффициент осцилляции):;

  • относительное отклонение по модулю (линейный коэффициент вариации):;

  • коэффициент вариации:

где μ — математическое ожидание.

    

Коэффициент вариации случайной величины — мера относительного разброса случайной величины; показывает, какую долю среднего значения этой величины составляет ее средний разброс. В отличие от среднего квадратического или стандартного отклонения измеряет не абсолютную, а относительную меру разброса значений признака в статистической совокупности. Исчисляется в процентах. Вычисляется только для количественных данных.

 

·       относительное квартильное расстояние:

 

 

14.

Размах вариации

Размах вариации – это разность между максимальным и минимальным значениями X из имеющихся в изучаемой статистической совокупности:

Недостатком показателя H является то, что он показывает только максимальное различие значений X и не может измерять силу вариации во всей совокупности.

 

15.

Cреднее линейное отклонение

Cреднее линейное отклонение - это средний модуль отклонений значений X от среднего арифметического значения. Его можно рассчитывать по формуле средней арифметической простой- получим среднее линейное отклонение простое:

Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Ранее уже была рассчитана средняя арифметическая = 4. Рассчитаем среднее линейное отклонение простое: Л = (|3-4|+|4-4|+|4-4|+|5-4|)/4 = 0,5.

Если исходные данные X сгруппированы (имеются частоты f), то расчет среднего линейного отклонения выполняется по формуле средней арифметической взвешенной - получим среднее линейное отклонение взвешенное:

Вернемся к примеру про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Ранее уже была рассчитана средняя арифметическая = 4 и среднее линейное отклонение простое = 0,5. Рассчитаем среднее линейное отклонение взвешенное: Л = (|3-4|*1+|4-4|*2+|5-4|*1)/4 = 0,5.

 

16.

Как рассчитывается дисперсия признака (простое и взвешенное)? В чем измеряется этот показатель? Какие свойства выборки (амплитуда колебаний, степень колеблемости относительно средней, однородность) показывает этот показатель? Приведите пример.

Дисперсия признака (s2) определяется на основе квадратической степенной средней:

.

простая                      взвешенная

 

Показатель s, равный  ,  называется средним квадратическим отклонением.

В общей теории статистики показатель дисперсии является оценкой одноименного показателя теории вероятностей и (как сумма квадратов отклонений) оценкой дисперсии в математической статистике, что позволяет использовать положения этих теоретических дисциплин для анализа социально-экономических процессов.

Если вариация оценивается по небольшому числу наблюдений, взятых из неограниченной генеральной совокупности, то и среднее значение признака определяется с некоторой погрешностью. Расчетная величина дисперсии оказывается смещенной в сторону уменьшения. Для получения несмещенной оценки выборочную дисперсию, полученную по приведенным ранее формулам, надо умножить на величину n / (n - 1). В итоге при малом числе наблюдений (< 30) дисперсию признака рекомендуется вычислять по формуле

.

Обычно уже при n > (15÷20) расхождение смещенной и несмещенной оценок становится несущественным. По этой же причине обычно не учитывают смещенность и в формуле сложения дисперсий.

Если из генеральной совокупности сделать несколько выборок и каждый раз при этом определять среднее значение признака, то возникает задача оценки колеблемости средних. Оценить дисперсиюсреднего значения можно и на основе всего одного выборочного наблюдения по формуле

,

где n – объем выборки; s2 – дисперсия признака, рассчитанная по данным выборки.

Величина   носит название средней ошибки выборки и является характеристикой отклонения выборочного среднего значения признака Х от его истинной средней величины. Показатель средней ошибки используется при оценке достоверности результатов выборочного наблюдения.

Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней

.

 2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины

.

3. Коэффициент вариации:

является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

У такого способа оценки вариации есть и существенный недостаток. Действительно, пусть, например, исходная совокупность рабочих, имеющих средний стаж 15 лет, со средним квадратическимотклонением s = 10 лет, «состарилась» еще на 15 лет. Теперь   = 30 лет, а среднеквадратическое отклонение по-прежнему равно 10. Совокупность, ранее бывшая неоднородной (10/15 × 100 = 66,7%), со временем оказывается, таким образом, вполне однородной (10/30 × 100 = 33,3 %).

 

17.

Как рассчитывается среднеквадратичное отклонение признака (простое и взвешенное)? В чем измеряется этот показатель? Какие свойства выборки (амплитуда колебаний, степень колеблемостиотносительно средней, однородность) показывает этот показатель? Приведите пример.

Среднее квадратичное отклонение определяется как обобщающая характеристика размеров вариации признака в совокупности. Оно равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической, т.е. корень из дисперсии и может быть найдена так:  1. Для первичного ряда:

2. Для вариационного ряда:

Преобразование формулы среднего квадратичного отклонени приводит ее к виду, более удобному для практических расчетов:

Среднее квадратичное отклонение определяет на сколько в среднем отклоняются конкретные варианты от их среднего значения, и к тому же является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, и поэтому хорошо интерпретируется. Для альтернативных признаков формула среднего квадратичного отклонения выглядит так:

где р — доля единиц в совокупности, обладающих определенным признаком; q — доля единиц, не обладающих этим признаком.