Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_po_xe.doc
Скачиваний:
6
Добавлен:
17.09.2019
Размер:
724.99 Кб
Скачать

61) Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части.

Следует иметь в виду, что некоторые элементарные частицы (электронфотонкварки и т. д) на данный момент считаются бесструктурными и рассматриваются как первичныефундаментальные частицы. Другие элементарные частицы (так называемые составные частицы — протоннейтрон и т. д.) имеют сложную внутреннюю структуру, но, тем не менее, по современным представлениям, разделить их на части невозможно

Элементарные частицы подразделяются на два класса:

Лептоны

К классу лептонов относятся частицы, которые, подобно электрону, не участвуют в водовороте внутриядерных взаимодействий. На сегодня известно шесть таких частиц. К одному семейству с электроном относятсямюоны и тау-частицы, которые похожи на электрон, но массивнее его. Обе эти тяжелые частицы нестабильны и со временем распадаются на несколько продуктов, включая электрон. Также имеется три электрически нейтральные частицы с нулевой (или близкой к нулю, на этот счет ученые до конца не определились) массой, получившие название нейтрино. Каждая из трех разновидностей нейтрино парна одной из трех частиц электронного семейства. Слово «лептон» происходит от греческого leptos, что значит «маленький».

Адроны

К адронам относят частицы, существующие внутри атомного ядра. Самые известные из них — это протон и нейтрон, но быстро распадающихся родственников у них сотни (в буквальном смысле). За исключением протона все они нестабильны, и их можно классифицировать по составу частиц, на которые они распадаются. Если среди конечных продуктов распада частицы имеется протон, ее называют «барион» (от греческогоbarys — «тяжелый»); если же протона среди продуктов распада нет, частица называется «мезон» (от греческого mesos — «средний»). Сам термин «адрон» происходит от греческого hadros («большой»).

Сумбурная картина субатомного мира, усложнявшаяся с открытием каждого нового адрона, уступила место новой простой картине с появлением концепции кварков (см. Кварки и восьмеричный путь). Согласно кварковой модели все адроны (но не лептоны) состоят из еще более элементарных частиц. Барионы состоят из трех кварков, а мезоны — из пары кварк—антикварк

62) Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим Л. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моде лью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием.  Эта модель казалась в то время вполне удовлетворительной, поскольку она согласовывалась со всеми известными фактами. Но новые идеи, выдвинутые А. Эйнштейном, стимулировали дальнейшее исследование, и вскоре подход к проблеме решительно изменился. 

63) Физиология человека (от греч. physis – природа) – наука о жизнедеятельности здорового человека и функциях его составных частей: клеток, тканей, органов и систем. Основоположником физиологии как самостоятельной отрасли знаний в XVII веке стал английский ученый У. Гарвей, который в результате многолетних наблюдений и экспериментов создал учение о кровообращении.

Развитие концепций современной физиологии

Элементарной структурной и функциональной единицей всего живого на Земле является клетка. Выдающимся достижением в физиологии клетки является обоснование в конце 1950-х годов мембранной теории биоэлектрических потенциалов (А. Ходжкин, Э. Хаксли, Б. Катц). Согласно этой теории биоэлектрические потенциалы обусловлены неодинаковой концентрацией ионов К+, Na+, Cl- внутри и вне клетки и различной проницаемостью для них поверхностной мембраны.

Нобелевской премии удостоены физиологи Д. Экклс, Э. Хаксли, А. Ходжкин за изучение ионных механизмов двух основных физиологических процессов – возбуждения и торможения. Экклс первым осуществил внутриклеточное отведение электрических потенциалов в клетках нервной системы, определил электрофизиологические характеристики возбуждающих и тормозящих потенциалов, открыл один из видов торможения.

Параллельно шли исследования структурной и функциональной организации клетки. Г. Паладе принадлежит открытие и описание рибосом. Р. Дюв открыл новый класс субклеточных частиц, названных им лизосомами, выяснил их природу и развил концепцию об их функции, определил участие лизосом в физиологических и патологических процессах в клетке. А. Клод показал, что с митохондриями (энергетическими "станциями" клетки) связана активность основных ферментов окисления. А. Сент-Дьердьи обнаружил в мышце актин и показал, что актомиозиновые нити (миозин был открыт российским биохимиком В. А. Энгелъгардтом) укорачиваются под влиянием АТФ. В результате этих открытий и дальнейших исследований выявилось единство принципа функционирования, химической динамики и энергетики обладающих подвижностью различных клеток организма.

Как известно, нервы и мышцы (нервная и мышечная ткани) относятся к возбудимым образованиям. Это значит, что в ответ на раздражение в них возникают различные электрические потенциалы. Одним из достижений физиологии XX века считается открытие медиаторов (нейротрансмиттеров) и создание учения о химическом механизме передачи нервного импульса в синапсах. Основы этого учения были заложены австрийским физиологом О. Леви и английским физиологом Г. Дейлом, удостоенными Нобелевской премии. В 1970 г. Нобелевской премии были удостоены сразу несколько ученых, исследования которых ознаменовали новый этап в развитии учения о медиаторах. Так, У. Эйлер, изучая процесс передачи нервных импульсов в симпатической нервной системе, установил, что медиатором в этом процессе служит вещество норадреналин. Б. Катцу принадлежит открытие механизма выделения другого медиатора – ацетилхолина – в нервно-мышечной передаче возбуждения. В настоящее время описано уже несколько десятков медиаторов, оказывающих как возбуждающее, так и тормозящее влияние.

Изучая сложную структуру смешанных нервов, Д. Эрлангер и Г. Гассер установили в них наличие 3 типов волокон и доказали их функциональные различия. Они сформулировали закон прямо пропорциональной зависимости скорости проведения импульса от диаметра нервного волокна.

64) Как бы ни решался вопрос о многообразии космологических моделей, очевидно, что наша Вселенная расширяется, эволюционирует. Время ее эволюции от первоначального состояния оценивается приблизительно в 20 млрд лет. Возможно, более подходящей является аналогия не с элементарной частицей, а со сверхгеном, обладающим огромным набором потенциальных возможностей, реализующихся в процессе эволюции. В современной науке выдвинут гак называемый антропный принцип в космологии. Суть его заключается в том, что жизнь во Вселенной возможна только при тех значениях универсальных постоянных, физических констант, которые в действительности имеют место. Если значение физических констант имело бы хоть ничтожное отклонение от существующих, то возникновение жизни было бы в принципе невозможно. Это значит, что уже в начальных физических условиях существования Вселенной заложена возможность возникновения жизни.

От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва, заполнившего все пространство. В итоге каждая частица материи устремилась прочь от любой другой.

Всего лишь через одну сотую секунды после взрыва Вселенная имела температуру порядка 100 000 млн град, по Кельвину. При такой температуре (выше температуры центра самой горячей звезды) молекулы, атомы и даже ядра атомов существовать не могут. Вещество Вселенной пребывало в виде элементарных частиц, среди которых преобладали электроны, позитроны, нейтрино, фотоны, а также в относительно малом количестве протоны и нейтроны Плотность вещества Вселенной спустя 0,01 с после взрыва была огромной — в 4 000 млн paз больше, чем у воды

В конце первых тpеx минут после взрыва температура вещества Вселенной, непрерывно снижаясь, достигла 1 млрд град. При этой все еще очень высокой температуре начали образовываться ядра атомов, в частности, ядра тяжелого водорода и гелия. Однако вещество Вселенной в конце первых трех минут состояло в основном из фотонов, нейтрино и антинейтрино.

65) Термин «кибернетика» в современном понимании как наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе впервые был предложен Норбертом Винером в 1948 году.

Она включает изучение обратной связи, чёрных ящиков и производных концептов, таких как управление и коммуникация в живых организмах, машинах и организациях, включая самоорганизации. Она фокусирует внимание на том, как что-либо (цифровое, механическое или биологическое) обрабатывает информацию, реагирует на неё и изменяется или может быть изменено, для того чтобы лучше выполнять первые две задачи. Стаффорд Бир назвал её наукой эффективной организации, а Гордон Паскрасширил определение, включив потоки информации «из любых источников», начиная со звёзд и заканчивая мозгом.

Пример кибернетического мышления. С одной стороны, компания рассматривается в качестве системы в окружающей среде. С другой стороны, кибернетическое управление может быть представлено как система.

Более философское определение кибернетики, предложенное в 1956 году Л. Куффиньялем (англ.), одним из пионеров кибернетики, описывает кибернетику как «искусство обеспечения эффективности действия» [4]. Новое определение было предложено Льюисом Кауфманом (англ.): «Кибернетика — исследование систем и процессов, которые взаимодействуют сами с собой и воспроизводят себя».

Кибернетические методы применяются при исследовании случая, когда действие системы в окружающей среде вызывает некоторое изменение в окружающей среде, а это изменение проявляется на системе через обратную связь, что вызывает изменения в способе поведения системы. В исследовании этих «петель обратной связи» и заключаются методы кибернетики.

Современная кибернетика зарождалась как междисциплинарные исследования, объединяя области систем управления,теории электрических цепей, машиностроения, математического моделирования, математической логики, эволюционной биологии, неврологии, антропологии. Эти исследования появились в 1940 году, в основном, в трудах учёных на т. н.конференциях Мэйси (англ.).

Другие области исследований, повлиявшие на развитие кибернетики или оказавшиеся под её влиянием, — теория управления, теория игр, теория систем (математический эквивалент кибернетики), психология (особенно нейропсихология, бихевиоризм, познавательная психология) и философия.

Системный подход — направление методологии исследования, в основе которого лежит рассмотрение объекта как целостного множества элементов в совокупности отношений и связей между ними, то есть рассмотрение объекта как системы.

Говоря о системном подходе, можно говорить о некотором способе организации наших действий, таком, который охватывает любой род деятельности, выявляя закономерности и взаимосвязи с целью их более эффективного использования. При этом системный подход является не столько методом решения задач, сколько методом постановки задач. Как говорится, «Правильно заданный вопрос — половина ответа». Это качественно более высокий, нежели просто предметный, способ познания.