Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИВТ 21-30.doc
Скачиваний:
55
Добавлен:
17.09.2019
Размер:
283.14 Кб
Скачать

Правила расстановки относительных ссылок в языке html

Если документ на который ссылается ссылка расположен в директории (папке) на уровень ниже, скажем dir, то ссылка параметрhref будет иметь вид href="dir/html.rar" , а если документ расположен в директории на уровень выше, то нам необходимо будет записатьhref="../html.rar".

Вставка рисунков в html страницу

Рисунок в HTML документ вставляется следующим образом <img src="ris.jpg" width="100" height="140" alt="Учебник по языку HTML">. Разберем, каково значение параметров тега <img>. Как видите, это одиночный тег. Параметр src задаёт путь к изображению (абсолютный или относительный). Правила указания относительного пути, такие же как и для ссылки. Параметры width и height определяют ширину и высоту рисунка в пикселях в HTML документе. Параметр alt задаёт альтернативный текст - тот текст который отображается в браузере если отключена загрузка графики.

Фреймы в html документе

Фрейм - это рамка, в которую загружается другой HTML документ. Многие сайты имеют фреймовую структуру, наш не исключение. Меню нашего сайта загружается во фрейм. Как это делается? Смотрите

<iframe name="I2" src="menu.htm" width="200" scrolling="no" height="500" marginwidth="2" marginheight="2">Ваш браузер не поддерживает фреймы</iframe>

Параметр name - имя фрейма, src - путь к загружаемой во фрейм странице width, height соответственно ширина и высота рамки. Параметр scrolling определяет отображаются ли полосы прокрутки во фрейме, если этот параметр не прописан в HTML коде, то полосы прокрутки отображаются при необходимости, если он равен "no", то полосы прокрутки не отображаются, если - "yes", то - отображаются в любом случае. Параметр name используется для задания конечной рамки по умолчанию - рамки в которую будут загружаться страницы при переходе по гиперссылкам HTML документа. Это осуществляется добавлением в HTML код тега <base> между тегами <head></head>. Для нашей рамки <base target="I2">.

Таблицы в языке HTML

Таблицы в HTML документ вставляются следующим образом

<table border="1" style="border-collapse: collapse" bordercolor="#111111">

<tr><td>Ячейка11<td>Ячейка12</tr>

<tr><td>Ячейка21<td>Ячейка22</tr>

</table>

Таблицу открывает и закрывает тег <table></table>, тег <tr></tr> - определяет столбец, одиночный тег <td> определяет ячейку в столбце, таким образом представленный код прописывает таблицу размером 2х2, которая в HTML документе будет выглядеть следующим образом

Ячейка11

Ячейка12

Ячейка21

Ячейка22

Теги style и bordercolor определяют соответственно стиль отображения таблицы и цвет границы. Более подробно смотрите в учебнике по HTML.

Теперь вы знакомы с основами языка HTML, более подробно изучит этот язык вам поможет учебник по HTML. Вы также можете поэкспериментировать в визуальных HTML редакторах. Начинайте создавать простые HTML документы, меняйте свойства их элементов и смотрите, что изменяется в HTML коде.

24. Языки программирования и их классификация. Языки программирования общего назначения. Алгоритмы и их анализ. Основные программно-эффективные схемы вычислений. Алгоритмы (типы, свойства, способы представления).

Существуют различные классификации языков программирования.

По наиболее распространенной классификации все языки программирования, в соответствии с тем, в каких терминах необходимо описать задачу, делят на языки низкого и высокого уровня.

Если язык близок к естественному языку программирования, то он называется языком высокого уровня, если ближе к машинным командам, – языком низкого уровня.

В группу языков низкого уровня входят машинные языки и языки символического кодирования: Автокод, Ассемблер. Операторы этого языка – это те же машинные команды, но записанные мнемоническими кодами, а в качестве операндов используются не конкретные адреса, а символические имена. Все языки низкого уровня ориентированы на определенный тип компьютера, т. е. являются машинно–зависимыми.

Машинно–ориентированные языки – это языки, наборы операторов и изобразительные средства которых существенно зависят от особенностей ЭВМ (внутреннего языка, структуры памяти и т.д.).

К языкам программирования высокого уровня относят Фортран (переводчик формул – был разработан в середине 50–х годов программистами фирмы IBM и в основном используется для программ, выполняющих естественно – научные и математические расчеты), Алгол, Кобол(коммерческий язык – используется, в первую очередь, для программирования экономических задач),Паскаль, Бейсик (был разработан профессорами Дармутского колледжа Джоном Кемени и Томасом Курцом.), Си (Деннис Ритч – 1972 году), Пролог (в основе языка лежит аппарат математической логики) и т.д.

Эти языки машинно–независимы, т.к. они ориентированы не на систему команд той или иной ЭВМ, а на систему операндов, характерных для записи определенного класса алгоритмов. Однако программы, написанные на языках высокого уровня, занимают больше памяти и медленнее выполняются, чем программы на машинных языках.

Программу, написанную на языке программирования высокого уровня, ЭВМ не понимает, поскольку ей доступен только машинный язык. Поэтому для перевода программы с языка программирования на язык машинных кодов используют специальные программы – трансляторы.

Существует три вида транслятора: интерпретаторы (это транслятор, который производит пооператорную обработку и выполнение исходного кода программы), компиляторы (преобразует всю программу в модуль на машинном языке, после чего программа записывается в память компьютера и лишь потом исполняется) и ассемблеры (переводят программу, записанную на языке ассемблера, в программу на машинном языке).

Языки программирования также можно разделять на поколения:

– языки первого поколения: машинно–ориентированные с ручным управлением памяти на компьютерах первого поколения.

– языки второго поколения: с мнемоническим представлением команд, так называемые автокоды.

– языки третьего поколения: общего назначения, используемые для создания прикладных программ любого типа. Например, Бейсик, Кобол, Си и Паскаль.

– языки четвертого поколения: усовершенствованные, разработанные для создания специальных прикладных программ, для управления базами данных.

– языки программирования пятого поколения: языки декларативные, объектно–ориентированные и визуальные. Например, Пролог, ЛИСП (используется для построения программ с использованием методов искусственного интеллекта), Си++, Visual Basic, Delphi.

Языки программирования также можно классифицировать на процедурные и непроцедурные.

В процедурных языках программа явно описывает действия, которые необходимо выполнить, а результат задается только способом получения его при помощи некоторой процедуры, которая представляет собой определенную последовательность действий.

Среди процедурных языков выделяют в свою очередь структурные и операционные языки. В структурных языках одним оператором записываются целые алгоритмические структуры: ветвления, циклы и т.д. В операционных языках для этого используются несколько операций. Широко распространены следующие структурные языки: Паскаль, Си, Ада, ПЛ/1. Среди операционных известны Фортран, Бейсик, Фокал.

Непроцедурное (декларативное) программирование появилось в начале 70-х годов 20 века, К непроцедурному программированию относятся функциональные и логические языки.

В функциональных языках программа описывает вычисление некоторой функции. Обычно эта функция задается как композиция других, более простых, те в свою очередь делятся на еще более простые задачи и т.д. Один из основных элементов функциональных языков – рекурсия. Оператора присваивания и циклов в классических функциональных языках нет.

В логических языках программа вообще не описывает действий. Она задает данные и соотношения между ними. После этого системе можно задавать вопросы. Машина перебирает известные и заданные в программе данные и находит ответ на вопрос. Порядок перебора не описывается в программе, а неявно задается самим языком. Классическим языком логического программирования считается Пролог. Программа на Прологе содержит, набор предикатов–утверждений, которые образуют проблемно–ориентированную базу данных и правила, имеющие вид условий.

Можно выделить еще один класс языков программирования – объектно–ориентированные языки высокого уровня. На таких языках не описывают подробной последовательности действий для решения задачи, хотя они содержат элементы процедурного программирования. Объектно–ориентированные языки, благодаря богатому пользовательскому интерфейсу, предлагают человеку решить задачу в удобной для него форме.

Первый объектно-ориентированный язык программирования Simula был создан в 1960-х годах Нигаардом и Далом.

Ява – язык для программирования Internet, позволяющий создавать безопасные, переносимые, надежные, объектно–ориентированные интерактивные программы. Язык Ява жестко связан с Internet, потому, что первой серьезной программой, написанной на этом языке, был браузер Всемирной паутины.

В последнее время, говоря о программировании в Internet, часто имеют в виду создание публикаций с использованием языка разметки гипертекстовых документов HTML. Применение специальных средств (HTML–редакторов) позволяет не только создавать отдельные динамически изменяющиеся интерактивные HTML–документы, используя при этом данные мультимедиа, но и редактировать целые сайты.

Предметно-ориентированный язык программирования (англ. domain-specific programming language, domain-specific language, DSL) — язык программирования, специально разработанный для решения определённого круга задач, в отличие от языков программирования общего назначения, таких, как Си, или языков моделирования общего назначения наподобие UML и др.

В рамках языка Forth всегда существовала, но не всегда использовалась возможность создания DSL-языков.

Языки программирования предметной области, дополненные технологиями метапрограммирования, являются эффективным средством автоматизации разработки программного обеспечения и в настоящий момент находят широкое применение в области информационных технологий.

Примерами предметно-ориентированных языков могут служить:

  1. Адаптивные объектные модели — это модели, которые строятся специально для определённой предметной области на объектно-ориентированных языках общего назначения.

  2. Файлы XML, используемые в современных проектах для конфигураций программных каркасов.

  3. Электронные документы с формальным описанием логики работы приложения.

Предметно-ориентированные языки разделяют на внешние и внутренние. Внешние — это языки, написанные на языке, отличном от основного языка программирования. Примерами такого типа могут служить конфигурационные XML-файлы. Внутренние языки, напротив, реализованы на языке программирования общего назначения. В качестве примера можно назвать адаптивные объектные модели.

Что такое анализ? Анализируя алгоритм, можно получить представление о том, сколько времени займет решение данной задачи при помощи данного алгоритма. Одну и ту же задачу можно решить с помощью различных алгоритмов. Анализ алгоритмов дает нам инструмент для выбора алгоритма. Результат анализа алгоритмов — не формула для точного количества секунд или компьютерных циклов, которые потребует конкретный алгоритм. Нужно понимать, что разница между алгоритмом, который делает N + 5 операций, и тем, который делает N + 250 операций, становится незаметной, как только N становится очень большим. Классы входных данных При анализе алгоритма выбор входных данных может существенно повлиять на его выполнение. Скажем, некоторые алгоритмы сортировки могут работать очень быстро, если входной список уже отсортирован, тогда как другие алгоритмы покажут весьма скромный результат на таком списке. А вот на случайном списке результат может оказаться противоположным. Поэтому не будем ограничиваться анализом поведения алгоритмов на одном входном наборе данных. Практически нужно искать такие данные, которые обеспечивают как самое быстрое, так и самое медленное выполнение алгоритма. Кроме того, полезно оценивать и среднюю эффективность алгоритма на всех возможных наборах данных. Наилучший случай Время выполнения алгоритма в наилучшем случае очень часто оказывается маленьким или просто постоянным, поэтому подобный анализ проводится редко. Наихудший случай Анализ наихудшего случая чрезвычайно важен, поскольку он позволяет представить максимальное время работы алгоритма. При анализе наихудшего случая необходимо найти входные данные, на которых алгоритм будет выполнять больше всего работы. Средний случай Анализ среднего случая является самым сложным, поскольку он требует учета множества разнообразных деталей. В основе анализа лежит определение различных групп, на которые следует разбить возможные входные наборы данных. На втором шаге определяется вероятность, с которой входной набор данных принадлежит каждой группе. На третьем шаге подсчитывается время работы алгоритма на данных из каждой группы. Время работы алгоритма на всех входных данных одной группы должно быть одинаковым, в противном случае группу следует подразбить. Среднее время работы вычисляется по формуле  где через n обозначен размер входных данных, через m — число групп. через pi — вероятность того, что входные данные принадлежат группе с номером i, а через ti — время, необходимое алгоритму для обработки данных из группы с номером i. В большинстве случаев мы будем предполагать, что вероятности попадания входных данных в каждую из групп одинаковы. Другими словами, если групп пять, то вероятность попасть в первую группу такая же, как вероятность попасть во вторую, и т.д., то есть вероятность попасть в каждую группу равна 0.2. В этом случае среднее время работы можно либо оценить по предыдущей формуле, либо воспользоваться эквивалентной ей формулой

Алгоритмом называется точное и понятное предписаниe исполнителю совершить последовательность действий, направленных на решение поставленной задачи. Слово «алгоритм» происходит от имени математика Аль Хорезми, который сформулировал правила выполнения арифметических действий. Первоначально под алгоритмом понимали только правила выполнения четырех арифметических действий над числами. В дальнейшем это понятие стали использовать вообще для обозначения последовательности действий, приводящих к решению любой поставленной задачи. Говоря об алгоритме вычислительного процесса, необходимо понимать, что объектами, к которым применялся алгоритм, являются данные. Алгоритм решения вычислительной задачи представляет собой совокупность правил преобразования исходных данных в результатные.

Основными свойствами алгоритма являются:

  1. детерминированность (определенность). Предполагает получение однозначного результата вычислительного процecca при заданных исходных данных. Благодаря этому свойству процесс выполнения алгоритма носит механический характер;

  2. результативность. Указывает на наличие таких исходных данных, для которых реализуемый по заданному алгоритму вычислительный процесс должен через конечное число шагов остановиться и выдать искомый результат;

  3. массовость. Это свойство предполагает, что алгоритм должен быть пригоден для решения всех задач данного типа;

  4. дискретность. Означает расчлененность определяемого алгоритмом вычислительного процесса на отдельные этапы, возможность выполнения которых исполнителем (компьютером) не вызывает сомнений.

Алгоритм должен быть формализован по некоторым правилам посредством конкретных изобразительных средств. К ним относятся следующие способы записи алгоритмов: словесный, формульно-словесный, графический, язык операторных схем, алгоритмический язык.

Наибольшее распространение благодаря своей наглядности получил графический (блок-схемный) способ записи алгоритмов.

Блок-схемой называется графическое изображение логической структуры алгоритма, в котором каждый этап процесса обработки информации представляется в виде геометрических символов (блоков), имеющих определенную конфигурацию в зависимости от характера выполняемых операций. Перечень символов, их наименование, отображаемые ими функции, форма и размеры определяются ГОСТами.

При всем многообразии алгоритмов решения задач в них можно выделить три основных вида вычислительных процессов:

  • линейный;

  • ветвящийся;

  • циклический.

Линейным называется такой вычислительный процесс, при котором все этапы решения задачи выполняются в естественном порядке следования записи этих этапов.

Ветвящимся называется такой вычислительный процесс, в котором выбор направления обработки информации зависит от исходных или промежуточных данных (от результатов проверки выполнения какого-либо логического условия).

Циклом называется многократно повторяемый участок вычислений. Вычислительный процесс, содержащий один или несколько циклов, называется циклическим. По количеству выполнения циклы делятся на циклы с определенным (заранее заданным) числом повторений и циклы с неопределенным числом повторений. Количество повторений последних зависит от соблюдения некоторого условия, задающего необходимость выполнения цикла. При этом условие может проверяться в начале цикла — тогда речь идет о цикле с предусловием, или в конце — тогда это цикл с постусловием.