Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_k_ekzamenu_M_i_MS_Lopatin.doc
Скачиваний:
36
Добавлен:
20.09.2019
Размер:
211.46 Кб
Скачать

Непосредственная адресация

В команде содержится не адрес операнда, а непосредственно сам операнд. При непосредственной адресации не требуется обращения к памяти для выборки операнда и ячейки памяти для его хранения. Это способствует уменьшению времени выполнения программы и занимаемого ею объёма памяти. Непосредственная адресация удобна для хранения различного рода констант.

Прямая адресация

Адрес указывается непосредственно в виде некоторого значения, все ячейки располагаются на одной странице. Преимущество этого способа в том, что он самый простой, а недостаток — в том, что разрядность регистров общего назначения процессора должна быть не меньше разрядности шины адреса процессора. 

Регистровая адресация

Регистровая адресация является частным случаем укороченной. Применяется, когда промежуточные результаты хранятся в одном из рабочих регистров центрального процессора. Поскольку регистров значительно меньше чем ячеек памяти, то небольшого адресного поля может хватить для адресации.

  1. Косвенно-регистровая, автоинкрементная и автодекрементная адресация.

Косвенно-регистровая адресация используется для обращения к ячейкам внутренннего ОЗУ данных. В качестве регистров-указателей используется регистры R10, R1 выбранного банка регистров.

В командах PUSH и POP используется содержимое указателя стека (SP).

Косвенно-регистровая адресация используется также для обращения к внешней памяти данных. В этом случае с помощью регистров-указателей R0 и R1 (выбранного банка рабочих регистров) выбирается ячейка из блока в 256 байт внешней памяти данных. Номер блока предварительно задается содержимым порта Р2.

16-разрядный указатель данных (DPTR) может быть использован для обращения к любой ячейке адресного пространства внешней памяти данных объемом до 64 Кбайт.

 Автоинкрементная и автодекрементная адресации.

Поскольку регистровая косвенная адресация требует предвари­тельной загрузки регистра косвенным адресом из оперативной памяти, что связано с потерей времени, такой тип адресации особенно эффективен при обработке массива данных, если имеется механизм автоматического приращения или уменьшения содержимого регистра при каждом обращении к нему. Такой механизм называется соответственно автоинкрементной и автодекрементной адресацией. В этом случае достаточно один раз загрузить в регистр адрес первого об­рабатываемого элемента массива, а затем при каждом обращении к регистру в нем будет формироваться адрес следующего элемента массива.

При автоинкрементной адресации сначала содержимое регистра используется как адрес операнда, а затем получает приращение, равное числу байт в элементе массива. При автодекрементной адресации сначала содержимое указанного в команде регистра уменьшает­ся на число байт в элементе массива, а затем используется как адрес операнда.

Автоинкрементная и автодекрементная адресации могут рассмат­риваться как упращенный вариант индексации - весьма важного механизма преобразования адресных частей команд и организации вычислительных циклов, поэтому их часто называют автоиндексацией.

  1. Сегментирование памяти.

Сегментирование памяти означает разбиение компьютерной памяти на фрагменты переменной длины, называемые сегментами.

В архитектуре x86 есть несколько режимов сегментации, которые могут использоваться для защиты памяти.[1] В процессорах архитектуры x86, существуют Global Descriptor Table и Local Descriptor Table, описывающие сегменты памяти. Указатели на сегменты в подобных процессорах хранятся в специализированных сегментныхрегистрах. Изначально их было 4: CS (code segment), SS (stack segment), DS (data segment) и ES (extra segment); затем добавили еще два: FS и GS.[1]

  1. Адресация байтов и слов.

Данные имеют длину, кратную байтам. В памяти они хранятся без разделения, а во время работы определяется, какой именно байт имеется в виду. Если машина оперирует только 8-разряядными данными (32 разряда – длина кода адреса – А31…А0), то разряды А31…А0 указывают адрес байта, какая бы ни была разрядность памяти. Если процессор 16-разрядный, то в нем может идти работа и с 8-ми, и с 16-разрядными словами. В этом случае адресом называют разряды А31…А1 (как бы округляя до 16-разрядных слов). Если мы работаем с 16 разрядами, то разряд А0 игнорируется. Если с 8 разрядами, то нужно указать, какой байт выбирается. Так как чаще всего рабочим считается низкий уровень, то вместо А0 делают 2 разряда: А0 – выборка младшего байта и ВНЕ – выборка старшего байта. ВНЕ=0, когда А0=1. Длина адреса при работе с 8-разрядными словами больше на 1 разряд.

  1. Регистры процессора.

Регистр процессора — блок ячеек памяти, образующий сверхбыструю оперативную память (СОЗУ) внутри процессора; используется самим процессором и большой частью недоступен программисту: например, при выборке из памяти очередной команды она помещается в регистр команд, к которому программист обратиться не может. (Имеются также регистры, которые в принципе программно доступны, но обращение к ним осуществляется из программ операционной системы, например, управляющие регистры и теневые регистры дескрипторов сегментов. Этими регистрами пользуются в основном разработчики операционных систем).

Существуют также так называемые регистры общего назначения (РОН), представляющие собой часть регистров процессора, использующихся без ограничения в арифметических операциях, но имеющие определенные ограничения, например в строковых. РОН, не характерные для эпохи мейнфреймов типа IBM/370[1] стали популярными в микропроцессорах архитектуры X86 — i8085i8086 и последующих[2].

Специальные регистры[3] содержат данные, необходимые для работы процессора — смещения базовых таблиц, уровни доступа и т. д.

Часть специальных регистров принадлежит устройству управления, которое управляет процессором путём генерации последовательности микрокоманд.

Доступ к значениям, хранящимся в регистрах, как правило, в несколько раз быстрее, чем доступ к ячейкам оперативной памяти (даже если кеш-память содержит нужные данные), но объём оперативной памяти намного превосходит суммарный объём регистров (объём среднего модуля оперативной памяти сегодня составляет 1-4 Гб[4], суммарная «ёмкость» регистров общего назначения/данных для процессора Intel 80x86 16 битов * 4 = 64 бита (8 байт)).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]