Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
117556_ED3D7_otvety_k_ekzamenu_po_ekologii.docx
Скачиваний:
3
Добавлен:
20.09.2019
Размер:
159.71 Кб
Скачать

Абиотические факторы водной среды.

Водная оболочка Земли называется гидросферой, и включает океаны, моря, реки, озера, болота, ледники и т. д. Вода занимает преобладающую часть биосферы Земли (71 % земной поверхности). Средняя глубина - 3554м, вес 0,022 % веса планеты, площадь - 1350 млн. кв. км -океаны, 35 млн. кв. км - пресные воды.

Абиотические факторы водной среды - это физические и химические свойства воды как среды обитания живых организмов.

Физические свойства:

1. Плотность.

Плотность как экологический фактор определяет условия передвижения организмов, причем некоторые из них (головоногие моллюски, ракообразные и т.д.), обитающие на больших глубинах, могут переносить давление до 400 - 500 атмосфер. Плотность воды также обеспечивает возможность опираться на нее, что особенно важно для бесскелетных форм (планктон).

2. Температура.

Изменение t° в зависимости от глубины и колебания (суточные и сезонные).

Температурный режим водоемов более устойчив, чем на суше, что связано с высокой теплоемкостью воды. Например, колебания t° верхних слоев океана -10-15°С, более глубокие слой 3 -4°С.

3. Световой режим.

Играет важную роль в распределении водных организмов. Водоросли в океане обитают в освещаемой зоне, чаще всего на глубине до 40 м, если прозрачность воды велика, то и до 200 м. У Багамских островов обнаружены водоросли на глубине 265 м, а туда доходит всего 5*10-6 солнечной радиации.

С глубиной меняется и окраска животных. Наиболее ярко и разнообразно окрашены обитатели мелководной части океана. В глубоководной зоне распространена красная окраска, здесь она воспринимается, как черный цвет, что позволяет животным скрываться от врагов. В наиболее глубоководных районах Мирового океана в качестве источника света организмы используют свет, испускаемый живыми существами (биолюминесценция).

4. Подвижность - постоянное перемещение водных масс в пространстве.

5. Прозрачность.

Зависит от содержания взвешенных частиц. Самое чистое - море Уэддела в Антарктиде, видимость 80м (прозрачность дистиллированной воды).

Химические свойства:

1.Соленость воды - содержание растворенных сульфатов, хлоридов, карбонатов. В океане 35 г/л солей. Черное море - 19 г/л.

Пресноводные виды не могут обитать в морях, а морские - в реках. Однако, такие рыбы, как лосось, сельдь всю жизнь проводят в море, а для нереста поднимаются в реки.

2. Количество растворенного О и СО . О - для дыхания.

3. Кислая, нейтральная, щелочная среда.

Все обитатели приспособились к определенным кислотно-щелочным условиям. Их изменение в результате загрязнения может привести к гибели организмов.

Биотические факторы.

Биотические факторы - это совокупность влияний жизнедеятельности одних организмов на жизнедеятельность других, а также на неживую природу.

Классификация биотических взаимодействий:

1. Нейтрализм - ни одна популяция не влияет на другую.

2. Конкуренция - это использование ресурсов (пищи, воды, света, пространства) одним организмом, который тем самым уменьшает доступность этого ресурса ддя другого организма.

Конкуренция бывает внутривидовая и межвидовая. Если численность популяции невелика, то внутривидовая конкуренция выражена слабо и ресурсы имеются в изобилии. При высокой плотности популяции интенсивная внутривидовая конкуренция снижает наличие ресурсов до уровня, сдерживающего дальнейший рост, тем самым регулируется численность популяции.

Межвидовая конкуренция - взаимодействие между популяциями, которое неблагоприятно сказывается на их росте и выживаемости. При завозе в Британию из Северной Америки каролинской белки уменьшилась численность обыкновенной белки, т.к. каролинская белка оказалась более конкурентоспособной.

Конкуренция бывает прямая и косвенная.

Прямая - это внутривидовая конкуренция, связанная с борьбой за место обитания, в частности защита индивидуальных участков у птиц или животных, выражающейся в прямых столкновениях. При недостатке ресурсов возможно поедание животных особей своего вида (волки, рыси, хищные клопы, пауки, крысы, щука, окунь и т.д.)

Косвенная - между кустарниками и травянистыми растениями в Калифорнии. Тот вид, который обосновался первым, исключает другой тип. Быстро растущие травы с глубокими корнями снижали содержание влаги в почве до уровня непригодного для кустарников. А высокой кустарник затенял травы, не давая им произрастать из-за нехватки света.

3. Паразитизм - один организм (паразит) живёт за счёт питания тканями или соками другого организма (хозяина), тесно связан в своём жизненном цикле. Паразитов различают по месту обитания:

• находятся на поверхности хозяина. Блохи, вши, клещи - животные. Тля, мучнистая роса - растения. У паразита имеются специальные приспособления (крючки, присоски и т.п.)

• внутри хозяина. Вирусы, бактерии, примитивные грибы - растения. Глисты - животные. Высокая плодовитость. Не приводят к гибели хозяина, но угнетают процессы жизнедеятельности

4. Хищничество - поедание одного организма (жертвы) другим организмом (хищником).

Хищники могут поедать травоядных животных, и также слабых хищников. Хищники обладают широким спектром питания, легко переключаются с одной добычи на другую более доступную.

Хищники часто нападают на слабые жертвы. Норка уничтожает больных и старых ондатр, а на взрослых особей не нападает.

Поддерживается экологическое равновесие между популяциями жертва-хищник.

5. Симбиоз - сожительство двух организмов разных видов при котором организмы приносят друг другу пользу. По степени партнерства симбиоз бывает:

Комменсализм - один организм питается за счет другого, не нанося ему вреда. Рак - актиния. Актиния прикрепляется к раковине, защищая его от врагов, и питается остатками пищи.

Мутуализм - оба организма получают пользу, при этом они не могут существовать друг без друга. Лишайник - гриб + водоросль. Гриб защищает водоросль, а водоросль кормит его.

В естественных условиях один вид не приведёт к уничтожению другого вида.

№21. Биопродуктивность экосистем

Скорость, с которой продуценты экосистемы фиксируют солнечную энергию в химических связях синтезируемого органического вещества, определяет продуктивность сообществ. Органическую массу, создаваемую растениями за единицу времени, называют первичной продукцией сообщества. Продукцию выражают количественно в сырой или сухой массе растений либо в энергетических единицах - эквивалентном числе джоулей[1].

Валовая первичная продукция - количество вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идет на поддержание жизнедеятельности самих растений (траты на дыхание). Эта часть может быть достаточно большой, она составляет от 40 до 70% валовой продукции. Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию, которая представляет собой величину прироста растений, энергетический резерв для консументов и редуцентов. Перерабатываясь в цепях питания, она идет на пополнение массы гетеротрофных организмов. Прирост за единицу времени массы консументов - это вторичная продукция сообщества. Ее вычисляют отдельно для каждого трофического уровня, т.к. прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего. Гетеротрофы, включаясь в трофические цепи, живут в конечном итоге за счет чистой первичной продукции сообщества. В разных экосистемах они расходуют её с разной полнотой. Если скорость первичной продукции в цепях питания отстает от темпов прироста растений, то это ведет к постепенному увеличению общей биомассы продуцентов. Под биомассой понимают суммарную массу организмов данной группы или всего сообщества в целом. Часто биомассу выражают в эквивалентных энергетических единицах.

Недостаточная утилизация продуктов опада в цепях разложения имеет следствием накопление органического вещества, что происходит, например, при заторфовывании болот, зарастании мелководных водоемов. Биомасса сообщества с уравновешенным круговоротом веществ остается относительно постоянной, т.к. практически вся первичная продукция тратится в целях питания и размножения[1].

Важнейшим практическим результатом энергетического подхода к изучению экосистем явилось осуществление исследований по Международной биологической программе, проводившихся учеными разных стран мира начиная с 1969 года в целях изучения потенциальной биологической продуктивности Земли.

Мировое распределение первичной биологической продукции крайне неравномерно. Самый большой абсолютный прирост растительного мира достигает в среднем 25 г в день в очень благоприятных условиях. На больших площадях продуктивность не превышает 0,1 г/м (жаркие пустыни и полярные пустыни). Общая годовая продукция сухого органического вещества на Земле составляет 150-200 млрд. тонн. Около трети его образуется в океанах, около двух третей - на суше. Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Энергия, недоиспользованная консументами, запасается в их телах, органических осадках водоемов и гумосе почв.

Эффективность связывания растительностью солнечной радиации снижается при недостатке тепла и влаги, при неблагоприятных физических и химических свойствах почвы и т.п. Продуктивность растительности изменяется не только при переходе от одной климатической зоны к другой, но и в пределах каждой зоны.

Для пяти континентов мира средняя продуктивность различается сравнительно мало. Исключением является Южная Америка, на большей части которой условия для развития растительности очень благоприятные.

Питание людей обеспечивается в основном сельскохозяйственными культурами, занимающими приблизительно 10% площади суши (около 1,4 млрд. га). Общий годовой прирост культурных растений составляет около 16% от всей продуктивности суши, большая часть которой приходится на леса. Приблизительно 1/2 урожая идет непосредственно на питание людей, остальная часть - на корм домашним животным, используется в промышленности и теряется в отбросах. Всего человек потребляет около 0,2% первичной продукции Земли.

Растительная пища обходится для людей энергетически дешевле, чем животная. Сельскохозяйственные площади при рациональном использовании и распределении продукции могли бы обеспечить примерно вдвое большее население Земли, чем существующее. Но это требует больших затрат труда и капиталовложений. Особенно трудно обеспечить население вторичной продукцией. В рацион человека должно входить не менее 30 г белков в день. Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно около 50% потребностей современного населения Земли. Большая часть населения Земли находится, таким образом, в состоянии белкового голодания, а значительная часть людей страдает также и от общего недоедания[1].

Таким образом, увеличение биопродуктивности экосистем, и особенно вторичной продукции, является одной из основных задач, стоящих перед человечеством.

 22 Температура как экологический фактор

Все химические процессы, протекающие в организме, зависят от температуры. Изменения тепловых условий, часто наблюдаемые в природе, глубоко отражаются на росте, развитии и других проявлениях жизнедеятельности животных и растений. Различают организмы с непостоянной температурой тела - пойкилотермные и организмы с постоянной температурой тела - гомойтермные. Пойкилотермные животные целиком зависят от температуры окружающей среды, тогда как гомойтермные способны поддерживать постоянную температуру тела независимо от изменений температуры окружающей среды. Подавляющее большинство наземных растений и животных в состоянии активной жизнедеятельности не переносит отрицательной температуры и погибает. Верхний температурный предел жизни неодинаков для разных видов - редко выше 40-45 оС. Некоторые цианобактерии и бактерии обитают при температурах 70-90 оС, в горячих источниках могут жить и некоторые моллюски (до 53 оС). Для большинства наземных животных и растений оптимум температурных условий колеблется в довольно узких пределах (15-30 оС). Верхний порог температуры жизни определяется температурой свертывания белков, поскольку необратимое свертывание белков (нарушение структуры белков) возникает при температуре около 60 oС.

Пойкилотермные организмы в процессе эволюции выработали различные приспособления к изменяющимся температурным условиям среды. Главным источником поступления тепловой энергии у пойкилотермных животных - внешнее тепло. У пойкилотермных организмов выработались различные приспособления к низкой температуре. Некоторые животные, например, арктические рыбы, обитающие постоянно при температуре -1,8 oС, содержат в тканевой жидкости вещества (гликопротеиды), препятствующие образованию кристаллов льда в организме; у насекомых накапливается для этих целей глицерин. Другие животные, наоборот, увеличивают теплопродукцию организма за счет активного сокращения мускулатуры - так они повышают температуру тела на несколько градусов. Третьи регулируют свой теплообмен за счет обмена тепла между сосудами кровеносной системы: сосуды, выходящие из мышц, тесно соприкасаются с сосудами, идущими от кожи и несущими охлажденную кровь (такое явление свойственно холодноводным рыбам). Адаптивное поведение проявляется в том, что многие насекомые, рептилии и амфибии выбирают места на солнце для обогрева или меняют различные позы для увеличения поверхности обогрева.

У ряда холоднокровных животных температура тела может меняться в зависимости от физиологического состояния: к примеру, у летающих насекомых внутренняя температура тела может подниматься на 10-12 oС и более вследствие усиленной работы мышц. У общественных насекомых, особенно у пчел, развился эффективный способ поддержания температуры путем коллективной терморегуляции (в улье может поддерживаться температура 34-35 oС, необходимая для развития личинок).

Пойкилотермные животные способны приспосабливаться и к высоким температурам. Это происходит также разными способами: теплоотдача может происходить за счет испарения влаги с поверхности тела или со слизистой верхних дыхательных путей, а также   за счет подкожной сосудистой регуляции (например, у ящериц скорость тока крови по сосудам кожи увеличивается при повышении температуры).

Наиболее совершенная терморегуляция наблюдается у птиц и млекопитающих - гомойтермных животных. В процессе эволюции они приобрели способность поддерживать постоянную температуру тела благодаря наличию четырехкамерного сердца и одной дуги аорты, что обеспечило полное разделение артериального и венозного кровотока; высокого обмена веществ; перьевого или волосяного покрова; регуляции теплоотдачи; хорошо развитой нервной системы приобрели способность к активной жизни при разной температуре. У большинства птиц температура тела несколько выше 40 oС, а у млекопитающих - несколько ниже. Весьма важное значение для животных имеет не только способность к терморегуляции, но и адаптивное поведение, постройка специальных убежищ и гнезд, выбор места с более благоприятной температурой и т.п. Они также способны приспосабливаться к низким температурам несколькими путями: кроме перьевого или волосяного покрова, теплокровные животные с помощью дрожи (микросокращения внешне неподвижных мышц) уменьшают теплопотери; при окислении бурой жировой ткани у млекопитающих образуется дополнительная энергия, поддерживающая обмен веществ.

Приспособление теплокровных к высоким температурам во многом сходно с аналогичными приспособлениями холоднокровных - потоотделение и испарение воды со слизистой рта и верхних дыхательных путей, у птиц - только последний способ, так как у них нет потовых желез; расширение кровеносных сосудов, расположенных близко к поверхности кожи, что усиливает теплоотдачу (у птиц этот процесс протекает в неоперенных участках тела, например через гребень). Температура, как и световой режим, от которого она зависит, закономерно меняется в течение года и в связи с географической широтой. Поэтому все приспособления более важны для обитания при отрицательных температурах.

23 Действие биотических факторов выражается в форме взаимовлияний одних организмов на жизнедеятельность других организмов и всех вместе на среду обитания. Различают прямые и косвенные взаимоотношения между организмами.

Внутривидовые взаимодействия между особями одного и того же вида складываются из группового и массового эффектов и внутривидовой конкуренции.

Межвидовые взаимоотношения значительно более разнообразны. Возможные типы комбинации отражают различные виды взаимоотношений:

  • нейтрализм

  • синойкия (квартирантство) — сожительство, при котором особь одного вида использует особь другого вида только как жилище, не принося своему «живому дому» ни пользы, ни вреда. Например, пресноводная рыбка горчак откладывает икринки в мантийную полость двухстворчатых моллюсков. Развивающиеся икринки надежно защищены раковиной моллюска, но они безразличны для хозяина и не питаются за его счет.

  • конкуренция

  • мутуализм(взаимовыгодный симбиоз) — это совместное сожительство организмов разных видов, приносящее взаимную пользу. Например, лишайники являются симбиотическими организмами, тело которых построено из водорослей и грибов. Нити гриба снабжают клетки водоросли водой и минеральными веществами, а клетки водорослей осуществляют фотосинтез и, следовательно, снабжают гифы грибов органическими веществами.

  • протокооперация

  • комменсализм — совместное сожительство организмов разных видов, при котором один организм использует другой как жилище и источник питания, но не причиняет вреда партнеру. Например, некоторые морские полипы, поселяясь на крупных рыбах, в качестве пищи используют их испражнения. В желудочно-кишечном тракте чело века находится большое количество бактерий и простейших, питающихся остатками пищи и не причиняющих вреда хозяину.

  • аменсализм

  • паразитизм (нахлебничество) — это форма антагонистического сожительства организмов, относящихся к разным видам, при котором один организм (паразит), поселяясь на теле или в теле другого организма (хозяина), питается за его счет и причиняет вред. Болезнетворное действие паразитов слагается из механического повреждения тканей хозяина, отравления его продуктами обмена, питания за его счет. Паразитами являются все вирусы, многие бактерии, грибы, простейшие, некоторые черви и членистоногие. В отличие от хищника паразит использует свою жертву длительно и далеко не всегда приводит ее к смерти. Нередко вместе со смертью хозяина погибает и паразит. Связь паразита с внешней средой осуществляется опосредованно через организм хозяина.

24 Трофические уровни

Устойчивые биогеохимические циклы вещества и энергии в биосфере нашей планеты формируются вследствие биологического разнообразия потребляемого организмами набора веществ и выделяемых в природную среду продуктов жизнедеятельности. Базу биологического круговорота веществ составляют трофические уровни, которые представлены конкретными видами живых организмов, делящимися на три основные группы: продуценты, консументы и редуценты. Трофический уровень составляют популяции организмов, выполняющих в экосистеме одинаковые трофические функции и имеющих различный видовой состав (от греч. trophe - «питание»).

Первый трофический уровень - уровень первичной продукции - образуют автотрофы. Это организмы, которые синтезируют органические вещества (углеводы, жиры, белки, нуклеиновые кислоты) из неорганических соединений, используя энергию Солнца. Первичная продукция - это биомасса растительных тканей. Первичные продуценты - растения, фотоавтотрофные бактерии и хемосинтезирующие бактерии (хемотрофы). Хемотрофы - микроорганизмы, синтезирующие органическое вещество за счет энергии окисления аммиака, сероводорода и других веществ, имеющихся в воде и почве.

Второй трофический уровень представляют консументы (гетеротрофы):

1) первого порядка - фитофаги - используют в качестве пищи растения;

2) второго порядка - питаются животной пищей.

Консументы - животные, бактерии, грибы, паразитические и насекомоядные растения - накапливают в тканях своего тела энергию, которая используется в пищу

25 Два вида трофических цепей. Трофическая структура экосистем. Трофические сети.

Различают два вида трофических цепей:

1)     Пастбищные (цепевыедания) начинается с поедания фотосинтезирующих организмов

2)     Детритные (цепиразложения) начинается с остатков отмерших организмов.

У многих животных пищевые связи представляют непростую цепь, а разветвленную трофическую цепь.

Трофическая структура экосистем и круговорот вещества в ней.

Правила 10%. Экологические пирамиды: энергии, чисел, биомассы.

Часть вещества и энергии в процессе питания теряются. Каждое последующее звено в цепи питания содержит 10% меньше чем предыдущий. Правило 10% Лицеманна .

Трофическую цепь можно изобразить в виде экологической пирамиды, где количество энергии продукции или численности организмов на каждом уровне изображается в виде прямоугольника в одном масштабе. Основой служат продуценты, последующие образуют этажи и вершины пирамиды.

Различают три вида экологических пирамид:

1)     Пирамида энергии или продукции. Показывают изменение энергии или первичной продукции на последующих трофических уровнях.

2)     Пирамиды биомассы- характеризует массу живого вещества. Для сухопутных систем суммарная масса растений превращает массу всех травоядных и массу всех хищников. Для биомасс систем — пирамида перевёрнута.

3)     Пирамида чисел или пирамида Элтона — отражает численность организмов на каждом уровне.

Все три типа пирамид отражают энергетические отношения в экосистеме.

26Экология и здоровье человека В настоящее время около 60 млн людей в мире дышат воздухом, содержащим вредные для здоровья человека примеси, а почти половина жителей пьёт воду, не соответствующую гигиеническим требованиям. Следствием заражения атмосферы является снижение иммунной защиты человека, увеличение количества вирусных и бактериальных инфекций, а также хронических заболеваний дыхательных путей. С загрязнённой водой в организм попадают радионуклиды и тяжёлые металлы, яды, токсины и вирусные инфекции, что также приводит к ухудшению здоровья человека и различным заболеваниям.

Бытовые экологические загрязнители и борьба с ними Наиболее распространённые бытовые экологические Асбест - способствует развитию онкологических заболеваний. Ковролин - является накопителем пыли и рассадником микроскопических клещей.

Древесно-стру-жечные плиты - содержат высокотоксичные вещества — фенол, формальдегид, аммиак. Применяемые для отделки комнат и изготовления мебели, такие плиты выделяют в воздух продукты своего распада через повреждения защитного слоя.

Полипропиленовые ворсовые паласы и ковры  - выделяют в воздух помещения испарения ядовитого вещества формальдегида. • Накапливают статическое электричество, которое, разряжаясь на человеке, приводит к расстройствам нервной системы (хотя последнее время в такие покрытия добавляют антистатики, проблема до конца не решена). • Являются отличными накопителями пыли и требуют постоянной чистки.

Стены из бетона, шлакоблоков и полимербетона  - выделяют изотопы газа радона. Содержание радона зависит от строительного материала. Минимальное его количество находится в дереве и красном кирпиче, среднее — в гравии, пемзе, глинозёме и большое — в силикатном кир-' пиче и фосфогипсе, содержащемся в штукатурке, цементе, строительных блоках. Бетонные стены в новых домах активно поглощают влагу из комнатного воздуха, вследствие чего возникают: — першение в горле; — ломкость волос; — шелушение кожи; — заболевания верхних дыхательных путей.

Влияние на здоровье - умеренная солнечная радиация вызывает отложение пигмента меланина (загар), благоприятно влияющего на здоровье. Неумеренное солнечное облучение, особенно с 11 до 16 ч, обостряет такие хронические заболевания, как туберкулёз, заболевания женских половых органов, вызывает стремительное старение кожи и способствует возникновению онкологических заболеваний, преимущественно рака кожи. • Количество нарушений ещё более увеличивается в годы так называемого активного солнца, а также на территориях с утончённым озоновым слоем над ними.

Средства от солнечных ожогов - смазать поражённое место кефиром. • Смешать 1 столовую ложку моркови, натёртой на мелкой тёрке (до консистенции каши), с белком одного яйца. Накладывать эту смесь один-два раза в день на обожжённое место на 20 мин. Вместо моркови можно использовать тёртый картофель. • При сильном солнечном ожоге лица наложить компресс из отвара укропа. Залить 2 стаканами воды 2 столовые ложки нарезанного укропа и кипятить не более 5 мин. Отвар процедить, смочить в нём марлю, сложенную в несколько слоев, или льняную салфетку. Наложить на лицо. Сверху положить махровое полотенце. Компресс держать 20 мин. Затем ополоснуть лицо прохладной водой. • Покрасневший от солнца нос припудрить несколько раз крахмалом.

Влияние погоды на здоровье Человек, находящийся в «третьем состоянии» (между здоровьем и болезнью), довольно чутко реагирует на изменение погодных условий. При перемене погоды (что, как правило, сопровождается изменением атмосферного давления) он может испытывать вялость, сонливость, снижение работоспособности, головные боли и др. В этот период резко увеличивается количество обострений хронических заболеваний. Патологическая зависимость состояния здоровья от погодных условий называется метеопатией. В меньших масштабах изменения самочувствия наблюдаются и при смене времён года. Критический период — весна. В период так называемой биологической весны нарушается согласованность биоритмов различных органов и систем. Это связано с тем, что в апреле—июне происходит переход от минимального уровня обшей активности (биологическая зима) к максимальному (биологическое лето). Вследствие повышения возбудимости различных систем организма, усиливаются его воспалительные и аллергические реакции.

Признаки метеопатии (проявляются при изменении погоды) • У людей со сниженным иммунитетом возникают простудные заболевания. • У хронических больных — заболевания обостряются, увеличивается количество инсультов, инфарктов, приступов стенокардии, обостряется ишемическая болезнь сердца. • У гипертоников появляются боли в области сердца, одышка, тошнота, повышение давления, вплоть до гипертонического криза. • У больных с бронхолёгочными заболеваниями усиливаются кашель, одышка, синюшность кожи. Профилактика метеопатии • Не переутомляться, всегда находить время для отдыха. • Сон не менее 7—8 ч в сутки. Появляющуюся бессонницу устранять доступными и эффективными способами (кроме снотворных лекарств). • Не менее 1 ч в день бывать на свежем воздухе. Этот час необходимо посвятить ходьбе, любой физической работе или оздоровительной тренировке. • Как можно чаще проветривать помещения для работы, досуга и сна. В крупном городе или при загрязнённом воздухе для образования отрицательно заряженных ионов в помещении рекомендуется использовать люстру Чижевского. • Ежедневный душ. Желателен контрастный душ со сменой температур от 7 до 11 раз. Люди, регулярно посещающие баню (1—2 раза в неделю), как правило, не чувствуют изменений погоды. Их сосуды начинают адекватно реагировать на различные температурные раздражители.

№275

Загрязнением в узком смысле считается привнесение в какую-либо среду новых, не характерных для нее физических, химических и биологических агентов или превышение естественного уровня этих агентов в среде. Так как объектом загрязнения всегда является биогеоценоз (экосистема), наличие вредных веществ означает применение режимов воздействия экологических факторов, что приводит к нарушению в экологической нише (или звена в пищевой цепи). Это в свою очередь приводит к нарушению обмена веществ, снижению интенсивности ассимиляции продуцентов, а значит, и продуктивности биоценоза в целом.

В широком спектре антропогенных воздействий на окружающую среду (физические, химические и биологические) химические стрессы сегодня рассматриваются как наиболее приоритетные ввиду того, что во всех сферах деятельности человека мы имеем дело со многими тысячами химических веществ (а всего их известно уже более десяти миллионов!). Использование многих из этих веществ для решения производственных задач, в том числе в промышленности, энергетике, сельском хозяйстве и на транспорте, к сожалению, приводит одновременно с решением этих задач к негативным эффектам на экосистемы, растения, животных и человека.

Проблемы влияния химических стрессоров на биоту и человека показывает приоритетную важность данной проблемы с точки зрения сохранения биоразнообразия и нормального генофонда. Человечество должно осознать, что в современной экологической ситуации необходимо в первую очередь стремиться не к новым экономическим и финансовым «достижениям», а к решению проблемы сохранения биологических видов (включая человека) на планете Земля.

Загрязнением в узком смысле считается привнесение в какую-либо среду новых, не характерных для нее физических, химических и биологических агентов или превышение естественного уровня этих агентов в среде. Так как объектом загрязнения всегда является биогеоценоз (экосистема), наличие вредных веществ означает применение режимов воздействия экологических факторов, что приводит к нарушению в экологической нише (или звена в пищевой цепи). Это в свою очередь приводит к нарушению обмена веществ, снижению интенсивности ассимиляции продуцентов, а значит, и продуктивности биоценоза в целом.

Загрязнения можно классифицировать:

а) ингредиентное (химическое) загрязнение, представляющее собой совокупность веществ, чуждых естественным биогеоценозам;

б) параметрическое (физическое) загрязнение среды, связанное с изменением качественных параметров окружающей среды;

№28 Физические загрязнения.

Физическим загрязнением называют загрязнение, которое связано с изменением физических параметров среды: шумовых, радиационных, световых, температурных, электромагнитных, и т.п.

Шумовое загрязнение отрицательно воздействует на организм человека, вызывая повышенную утомляемость, снижение умственной активности, понижение производительности труда, развитие сердечно-сосудистых и нервных заболеваний. По мнению ученых, шум сокращает продолжительность жизни человека в больших городах на 8 — 12 лет. В Древнем Китае существовала даже звуковая казнь за богохульство. Физиолого-биохимическая адаптация человека к шуму невозможна.

Сильный шум является для человека физическим наркотиком. Поэтому часть людей и, прежде всего молодежь, увлекаясь современной музыкой с большой интенсивностью ее звучания, подвергает свое здоровье опасности вследствие воздействия на организм физического наркотика. Женщины менее устойчивы к сильному шуму, который быстрее приводит их к неврастении. А слабые бытовые шумы в доме, обусловленные плохой звукоизоляцией квартир, разрушительнее действует на нервную систему мужчин.

Электромагнитное загрязнение возникает в результате изменений электромагнитных свойств среды. В последнее время уделяется большое внимание искусственным электромагнитным полям (ЭМП), источником которых является радиопередающие устройства, электрифицированные транспортные средства, линии электропередач и др.

О биологическом влиянии ЭМП опубликовано много материалов. Наблюдаемые при этом эффекты до сих пор не ясны, поэтому тема остается актуальной уже третье десятилетие.

Многие компании из 14 стран мира постоянно проводят исследования на живых организмах, но до сих пор не могут прийти к единому мнению. Основная частота в контактной сети 50 Гц и для этой частоты проведено большое количество опытов на животных. Данные варьируют от опыта к опыту и бывают как отрицательные (биологическое изменение крови у крыс), так и положительные (увеличение выживаемости при спонтанно развивающейся лейкемии у мышей). ЭМП вызывают у животных колебания шерсти на спине (около 1 мм) и значительно большее колебание усов. Эти факты способны вызвать беспокойство, потерю ориентации, нервное напряжение и развитие ряда заболеваний.

Очень мало известно о действии слабых ЭМП, не существует научно обоснованных пределов воздействия ЭМП для распространенных в быту приборов и аппаратов: компьютеров, телевизоров, радиотелефонов и т.п. По полученным данным можно предположить, что длительное воздействие слабых ЭМП заметно скажется лишь в 4-м — 10-м поколении. Однако известно, что у работающих за компьютерами до 6 часов в сутки, заболевания органов зрения, поражения ЦНС и сердечно-сосудистой системы происходит в 5 раз чаще, чем в контрольных группах. Не стоит также слишком часто пользоваться радио- и электроприборами (радиотелефоном и даже электробритвой), так как из-за воздействия ЭМИ опасность заболеть раком крови возрастает на 20 — 40%.

Одним из видов физического загрязнения является ионизирующее излучение. Оно обладает энергией, достаточной для того, чтобы выбить один или более электронов из атомов и образовать положительно заряженные ионы, которые в свою очередь вступают в реакцию и разрушают ткани живых организмов. Примерами ионизирующего излучения являются ультрафиолетовое излучение Солнца и аппаратов ультрафиолетового облучения, рентгеновское излучение, нейтронное излучение, возникающее в ходе реакции ядерного деления и ядерного синтеза, а также альфа-, бета- и гамма-излучение, испускаемое радиоактивными изотопами. У некоторых веществ все изотопы радиоактивные (технеций, прометий, а также все элементы таблицы Менделеева, начиная с полония и кончая трансурановыми).

Воздействие ионизирующего излучения приводит к повреждению клеток человеческого организма двумя способами. Один из них наносит генетические повреждения, которые изменяют гены и хромосомы. Другой способ вызывает соматические повреждения: ожоги, выкидыши, гладкие катаракты, раковые заболевания костей, щитовидной и молочной желез, легких.

Ионизирующее излучение вызывает острую и хроническую лучевую болезнь, тяжесть которой зависит от дозы облучения (см. табл. 11.2).

Ионизирующее излучение оказывает мощное мутагенное, эмбриотоксическое и тератогенное воздействие. При этом более чувствительны к нему высокоорганизованные организмы, в том числе человек, а наиболее устойчивыми являются микроорганизмы.

Громадный урон здоровью наносит загрязненность продуктов питания радиоактивными изотопами, причем особенно высокие концентрации могут быть в мясе, молоке, грибах.

Тепловое загрязнение является результатом повышения температуры среды, возникающее при отводе воды от систем охлаждения в водные объекты, при выбросе потоков дымовых газов или воздуха. Тепловое загрязнение водоемов приводит к последовательной смене видового состава биоценоза водорослей. Известны факты, когда сброс теплых вод создавал тепловой барьер для рыб на путях к нерестилищам.

Световое загрязнение создается при нарушении естественного режима освещенности в результате воздействия искусственных источников света, приводит к аномалиям в жизни животных и растений.

№29 Химические загрязнители.

Химические загрязнители могут вызывать острые отравления, хронические болезни, а также оказывать канцерогенное, мутагенное и тератогенное действие. Рассмотрим влияние некоторых из них на организм человека.

Тяжелые металлы получили свое название благодаря высоким значениям атомной массы. Они способны накапливаться в растительных и животных тканях, оказывая токсичное воздействие. В небольших количествах некоторые тяжелые металлы необходимы для жизнедеятельности человека. Среди них — медь, цинк, марганец, железо, кобальт, молибден и другие. Однако увеличение их содержания выше нормы вызывает токсичный эффект и представляет угрозу для здоровья. Кроме того, существует около 20 металлов, не являющихся необходимыми для функционирования организма. Наиболее опасные из них — ртуть, свинец, кадмий и мышьяк. Отравление человека ртутью известно как болезнь Минимато. Она впервые была обнаружена у японских рыбаков при потреблении рыбы из загрязненных ртутью водоемов. Клиническая картина связана с необратимыми изменениями в нервной системе вплоть до летальных исходов.

Воздействие кадмия на организм приводит к нарушению работы почек и вызывает необратимые изменения в скелете. Кадмий представляет собой один из самых опасных токсикантов среды. Он опасен в любой форме — доза 30 — 40 мг может оказаться смертельной. Больше всего кадмия мы получаем с растительной пищей. Растения и грибы поглощают до 70 % кадмия из почвы и 30% из воздуха. Поскольку кадмий ядовит в малой дозе, то даже питье лимонада из сосудов, материал которых содержит кадмий, чревато опасностью. Из-за того, что однажды поглощенное количество кадмия выводится из человеческого организма чрезвычайно медленно (0,1 % в сутки), легко может происходить хроническое отравление организма. Самые ранние симптомы его — поражение почек, нервной системы, половых органов. Позднее возникают острые костные боли в спине и ногах. Типично также нарушение функции легких. Аккумуляцию кадмия в организме тормозит достаточное количество железа в крови, а большие дозы витамина Д действуют как противоядие при отравлении кадмием.

Свинец и многие его соединения используются в промышленности для изготовления некоторых сплавов, аккумуляторов, припоев, химической аппаратуры, защитных средств от ионизирующего излучения, в производстве хрусталя, а также в качестве красок (свинцовые белила), глазури для гончарных изделий и пр. Возможно отравление свинцом в быту при употреблении пищевых продуктов, хранящихся в посуде, покрытой изнутри свинцовой глазурью, а также при употреблении консервов, хранящихся в банках с добавлением свинца. Основным источником загрязнения среды свинцом является автотранспорт. Попадая в организм, свинец накапливается во многих органах и тканях, создавая депо: большая часть его откладывается в костях, вытесняя соли кальция из костной ткани. Кроме того, он депонируется в мышцах, печени, почках, селезенке, головном мозге, сердце и лимфатических узлах. Из депо свинец выделяется медленно, иногда в течение нескольких лет после прекращения контакта с ним. Для свинцовой интоксикации характерна так называемая «свинцовая колика», характеризующаяся резким спазмом сосудов, повышением артериального давления, спастико-атоническими явлениями в кишечнике, появлением судорожных припадков. Характерным также является развитие гипохромной анемии.

Не менее опасен и мышьяк. Помимо острого отравления, характеризующегося появлением металлического вкуса во рту, рвотой, сильными болями в животе, развитием острой сердечно-сосудистой и почечной недостаточности и появлением судорог, возможны хронические интоксикации. Так, потребление воды, содержащей более 0,1мкг/л мышьяка, вызывает гиперпигментацию, кератоз и даже рак кожи.

Следует отметить, что для свинца смертельная доза при приеме внутрь составляет 20 — 50 г, солей ртути — 0,5 г. Для мышьяка — 0,06 — 0,2 г.

Кроме тяжелых металлов, особо опасными загрязнителями являются диоксины, которые образуются из хлор- и фтор -производных ароматических углеводородов, используемых при производстве бактерицидных и гербицидных препаратов. Диоксины практически не выводятся из почвы и водной среды. Они чрезвычайно токсичны для человека и животных даже в очень низких концентрациях. Вызывают поражение печени, почек, иммунной системы, обладают канцерогенным, тератогенным и мутагенным действием.

Формальдегид выделяется из прессованных плит, используемых в конструкции настилов полов, шкафов и другой мебели. Обладает выраженным эмбриотоксическим действием, а также канцерогенным, тератогенным и мутагенным эффектами.

Бензαпирен — содержится в загрязненном городском воздухе, выхлопных газах, сигаретном дыме. Является сильным канцерогеном.

Группа полициклических ароматических углеводородов (ПАУ) образуется при неполном сгорании органических веществ, содержащих углерод и водород (например, при лесных пожарах и вулканических извержениях). Но основная их масса образуется при горении мусора, древесины, нефти. Обнаружены в табачном дыме, жареных, копченых и печеных пищевых продуктах. ПАУ насчитывают сотни соединений, они встречаются в воздухе, почве и воде и почти все являются канцерогенами.

Широкая химизация сельского хозяйства привела к активному применению для борьбы с вредителями сельскохозяйственных культур пестицидов и гербицидов, которые являются ядохимикатами и при контакте с человеком могут привести как к хроническим интоксикации, так и к острым отравлениям. Хлорорганические (ХОС) и фосфорорганические (ФОС) ядохимикаты при поступлении в организм внутрь, а также через дыхательные пути, слизистые и кожные покровы могут вызвать острые отравления, проявляющиеся рвотой, резкими болями в животе, повышением артериального давления, явлениями почечной и сердечно-сосудистой недостаточности, нарушениями со стороны ЦНС.

При химических загрязнениях атмосферный путь поступления токсичных веществ в организм человека является ведущим, так как в течение суток он потребляет около 15—25 кг воздуха, 2,5— 5 кг воды и 1,5—2,5 кг пищи. Кроме того, при ингаляции химические элементы поглощаются организмом особенно интенсивно. Так, свинец, поступающий с воздухом, абсорбируется кровью на 60 %, тогда как поступающий с водой — на 10 %, ас пищей - на 5%. Влияние на организм человека основных химических загрязнителей представлено в табл. 11.1.

Загрязнением атмосферы обусловлено до 30 % общих заболеваний населения промышленных центров.

Наиболее значимое влияние на состав атмосферы оказывают предприятия черной и цветной металлургии, химическая и нефтехимическая промышленность, стройиндустрия, энергетические предприятия, целлюлозно-бумажная промышленность, автотранспорт, а в некоторых городах и котельные.

Черная металлургия. Процессы выплавки чугуна и переработки его на сталь сопровождаются выбросом в атмосферу различных газов. Выброс пыли в расчете на 1 т предельного чугуна составляет 4,5 кг, сернистого газа – 2,7 кг, марганца – 0,1–0,6 кг. Вместе с доменным газом в атмосферу в небольших количествах выбрасываются также соединения мышьяка, фосфора, сурьмы, свинца, пары ртути и редких металлов, цианистый водород и смолистые вещества.

Источником загрязнения воздуха сернистым газом являются агломерационные фабрики. Во время агломерации руды происходит выгорание серы из пиритов. Сульфидные руды содержат до 10% серы, а после агломерации ее остается 0,2–0,8%. Выброс сернистого газа при этом может составить до 190 кг на 1 т руды (т.е. работа одной ленточной машины дает около 700 т сернистого газа в сутки).

Значительно загрязняют атмосферу выбросы мартеновских и конвертерных сталеплавильных цехов. При выплавке стали в мартеновских печах пыль образуется при окислении металлической шихты из шлака, руды, известняка и окалины, идущих на окисление примесей шихты, и из доломита, применяющегося для заправки пода печи. В период кипения стали выделяются также пары металла, окислов шлака и металла, газы. Преобладающая часть пыли мартеновских печей состоит из триокиси железа (67%) и триокиси алюминия (6,7%). При бескислородном процессе на 1 т мартеновской стали выделяется 3000–4000 м3 газов с концентрацией пыли в среднем 0,5 г/м3. При подаче кислорода в зону расплавленного металла пылеобразование многократно увеличивается, достигая 15–52 г/м3. Кроме того, плавление стали сопровождается выгоранием некоторых количеств углерода и серы, в связи с чем в отходящих газах мартеновских печей при кислородном дутье содержится до 60 кг окиси углерода и до 3 кг сернистого газа в расчете на 1 т выплавляемой стали.

Главной особенностью конвертерного процесса является получение стали из жидкого чугуна без применения топлива. Варение стали по такому принципу осуществляется в конвертерах емкостью 50, 100, 250 т и более путем продувания жидкого чугуна кислородом, что обеспечивает выгорание нежелательных примесей, например марганца, фосфора и углерода, содержащихся в передельном чугуне. Процесс получения конвертерной стали носит цикличный характер и при кислородном дутье длится 25–30 мин. Образующиеся дымовые газы состоят из частиц окислов кремния, марганца и фосфора. В составе дыма содержится значительное количество окиси углерода – до 80%. Концентрация пыли в отходящих газах составляет примерно 17 г/м3.

Большинство современных заводов черной металлургии имеют цехи коксования углей и отделения по переработке коксового газа. Коксохимические производства загрязняют атмосферный воздух пылью и смесью летучих соединений. В некоторых случаях, например при нарушении режима работы, в атмосферу выбрасываются значительные количества неочищенного коксового газа.

Загрязнение воздуха пылью при коксовании углей происходит при подготовке шихты и загрузке ее в коксовые печи, выгрузке кокса в тушильные вагоны и мокром тушении кокса. Мокрое тушение сопровождается к тому же выбросом в атмосферу веществ, входящих в состав используемой воды.

Промышленные аварии в этой отрасли приводят к обострению экологической ситуации в регионе. Строительство объектов большой мощности при недостаточной проработке вопросов аспирации, вентиляции, пылегазоочистки приводит к постоянным аварийным выбросам в атмосферу значительного количества вредных веществ.

Цветная металлургия. Вредные вещества образуются при производстве глинозема, алюминия, меди, свинца, олова, цинка, никеля и других металлов в печах (для спекания, выплавки, обжига, индукционные и др.), на дробильно-размольном оборудовании, в конвертерах, местах погрузки, выгрузки и пересылки материалов, в сушильных агрегатах, на открытых складах. В основном предприятия цветной металлургии загрязняют атмосферный воздух сернистым ангидридом (75% суммарного выброса в атмосферу), окисью углерода (10,5%) и пылью (10,4%).

Химическая и нефтехимическая промышленность. Выбросы в атмосферу в химической промышленности происходят при производстве кислот (серной, соляной, азотной, фосфорной и др.) резинотехнических изделий, фосфора, пластических масс, красителей и моющих средств, искусственного каучука, минеральных удобрений, растворителей (толуола, ацетона, фенола, бензола), крекинге нефти.»

Разнообразием исходного сырья для производства определяется состав загрязняющих веществ – в основном окись углерода (28% суммарного выброса в атмосферу), сернистый ангидрид (16,3%), окислы азота (6,8%) и др. В выбросах содержится аммиак (3,7%), бензин (3,3%), сероуглерод (2,5%), сероводород (0,6%), толуол (1,2%), ацетон (0,95%), бензол (0,7%), ксилол (0,3%), дихлорэтан (0,6%), этилацетат (0,5%), серная кислота (0,3%).

Решение экологических проблем в отрасли осложнено эксплуатацией морально и физически устаревшего оборудования (60% – эксплуатируется более 10 лет, до 20% – свыше 20 лет, до 10% – более 30). Происшедшие в последние годы катастрофы на химических предприятиях в Уфе, Стерлитамаке, Томске, Ангарске, Салавате, Ставрополе, других городах, постоянные локальные взрывы и разрушения объектов с человеческими жертвами, заражение атмосферы и других объектов окружающей среды свидетельствуют о том, что ситуация в отрасли критическая. Следует отметить, что в последние годы выбросы в атмосферу загрязняющих веществ предприятиями отрасли резко снизились. Однако произошло это не потому, что были проведены эффективные природоохранные мероприятия, а из-за спада производства.

Предприятия нефтеперерабатывающей промышленности, концентрация которых особенно велика в Башкортостане, Самарской, Ярославской и Омской областях, загрязняют атмосферу выбросами углеводородов (23% от суммарного выброса), сернистого газа (16,6%), окиси углерода (7,3%), окислов азота (2%).

Особую экологическую опасность представляет разработка месторождений нефти и газа с повышенным содержанием сероводорода.

Промышленность строительных материалов. Производство цемента и других вяжущих, стеновых материалов, асбестоцементных изделий, строительной керамики, тепло- и звукоизоляционных материалов, строительного и технического стекла сопровождается выбросами в атмосферу пыли и взвешенных веществ (57,1% от суммарного выброса), окиси углерода (21,4%), сернистого ангидрида (10,8%) и окислов азота (9%). Кроме того, в выбросах присутствуют сероводород (0,03%), формальдегид (0,02%), толуол (0,02%), бензол (0,01%), пятиокись ванадия (0,01%), ксилол (0,01%). Вокруг заводов, производящих цемент, асбест и другие строительные материалы, сложились зоны с повышенным содержанием в воздухе бензαпирена, пыли, в том числе цементной, и других вредных веществ.

Деревообрабатывающая и целлюлозно-бумажная промышленность. Наиболее крупные предприятия отрасли сосредоточены в Восточно-Сибирском, Северном, Северо-Западном и Уральском регионах, а также в Калининградской области. Среди наиболее крупных загрязнителей атмосферы можно выделить Архангельский целлюлозно-бумажный комбинат (7,5% общего выброса по отрасли). Характерные загрязняющие вещества, производимые этими предприятиями, – твердые вещества (29,8% суммарного выброса в атмосферу), окись углерода (28,2%), сернистый ангидрид (26,7%), окислы азота (7,9%), толуол (1%), сероводород (0,9%), ацетон (0,5%), ксилол (0,45%), бутилацетат (0,4%), этилацетат (0,4%), метилмеркаптан (0,2%), формальдегид (0,1%).

В сельской местности источниками загрязнения атмосферного воздуха являются животноводческие и птицеводческие хозяйства, промышленные комплексы по производству мяса, предприятия, обслуживающие технику, энергетические и теплосиловые предприятия. Над территориями, примыкающими к помещениям для содержания скота и птицы, в атмосферном воздухе распространяются на значительные расстояния аммиак, сероводород и другие дурно пахнущие газы.

В растениеводческих хозяйствах атмосферный воздух загрязняется минеральными удобрениями, пестицидами при протравлении полей и семян на складах, а также на хлопкоочистительных заводах.

Смог (смесь дыма и тумана). Сам по себе туман не опасен для человеческого организма, губительным он становится, только если чрезмерно загрязнен токсическими примесями. Смог наблюдается лишь в осенне-зимнее время (с октября по февраль). Главную опасность представляет содержащийся в нем сернистый газ в концентрации 5–10 г/м и выше.

30Глобальные экологические проблемы энергетики Энергетика — это основа промышленности всего мирового хозяйства. Поэтому последствия влияния энергетики на экологию Земли носит глобальный характер. Воздействие энергетики на окружающую среду разнообразно и определяется видом энергоресурсов и типом энергоустановок. Приблизительно 1/4 всех потребляемых энергоресурсов приходится на долю электроэнергетики. Остальные 3/4 приходятся на промышленное и бытовое тепло, на транспорт, металлургические и химические процессы. Ежегодное потребление энергии в мире приближается к 10 млрд. т условного топлива, а к 2000 году оно достигнет, по прогнозам экспертов, 18-23 млрд. т. Теплоэнергетика в основном твердое топливо. Самое распространенное твердое топливо нашей планеты — уголь. И с экологической и с экономической точки зрения метод прямого сжигания угля для получения электроэнергии не лучший способ использования твердого топлива. При сжигании жидкого топлива с дымовыми газами в атмосферу воздуха поступают: сернистые ангидриды, оксиды азота, окись и двуокись углерода, газообразные и твердые продукты неполного сгорания топлива, соединения ванадия, соли натрия, и др. С точки зрения экологии жидкое топливо менее вредно, чем уголь. Если уровень загрязнения атмосферы при использовании угля принять за 1, то сжигание мазута даст 0,6, а использование природного газа снижает эту величину до 0,2. Парниковый эффект. Повышение концентрации углекислого газа в атмосфере вызывает так называемый парниковый эффект, который получил название по аналогии с перегревом растений в парнике. Роль пленки в атмосфере выполняет углекислый газ. В последние годы стала известна подобная роль и некоторых других газов (СН4 и N2О). Количество метана увеличивается ежегодно на 1%, углекислого газа - на 0,4%, закиси азота - на 0,2%. Считается, что углекислый газ ответственен за половину парникового эффекта. Загрязнение атмосферы. Негативное влияние энергетики на атмосферу сказывается в виде твердых частиц, аэрозолей и химических загрязнений. Особое значение имеют химические загрязнения. Главным из них считается сернистый газ, выделяющийся при сжигании угля, сланцев, нефти, в которых содержатся примеси серы. Некоторые виды угля с высоким содержанием серы дают до 1 т сернистого газа на 10 т сгоревшего угля. Сейчас вся атмосфера земного шара загрязнена сернистым газом. Идет окисление до серного ангидрида, а последний вместе с дождем выпадает на землю в виде серной кислоты. Эти осадки называют — кислотными дождями. То же самое происходит и после поглощения дождем диоксида азота — образуется азотная кислота. Озоновые "дыры". Впервые уменьшение толщины озонового слоя было обнаружено над Антарктидой. Этот эффект — результат антропогенного воздействия. Сейчас обнаружены и другие озоновые дыры. В настоящее время заметно уменьшение количества озона в атмосфере над всей планетой. Оно составляет 5-6% за десятилетие в зимнее время и 2-3% — в летнее время. Некоторые ученые считают, что это проявление действия фреонов (хлорфторметанов), но озон разрушается также оксидом азота, которые выбрасываются предприятиями энергетики. Отрицательное влияние атомных электростанций сказывается прежде всего на атмосфере. Правда, при нормальной работе АЭС вероятность радиоактивного загрязнения невелика. Но в случае аварии воздействие радиоактивных выбросов носит глобальный характер. Соотношение используемых энергетических ресурсов в истории человечества менялось с развитием цивилизации в зависимости от истощения исчерпаемых энергоресурсов, возможности использования и экологических последствий. За последние 200 лет можно выделить три этапа: * угольный этап охватывающий весь XIX век и первую половину XX века, в это время преобладает потребление угольного топлива; * нефтегазовый этап со второй половины XX века до 80-х годов, на смену углю приходит газ и нефть как более эффективные энергоносители чем твердые; * начиная с 80-х годов начинается постепенный переход от использования минеральных исчерпаемых ресурсов к неисчерпаемым (энергии Солнца, воды, ветра, приливов и т.д.). Особо следует сказать о ядерной энергетике. С начала мирового энергетического кризиса роль атомной энергетики возросла. Но уже в начале 80-х годов рост потребления атомной энергии замедлился. В большинстве стран были пересмотрены планы сооружения АЭС. Это было последствием ряда экологических загрязнений при авариях, особенно в результате Чернобыльской катастрофы. Именно в этот период многие страны приняли решение о полном или постепенном отказе от развития атомной энергетики.

№31 Большие города потребляют в сутки значительное количество воды, пищи и топлива, а взамен выбрасывают в атмосферу огромное количество газообразных, жидких и твердых отходов. Кроме того, огромная масса города, сосредоточенная на небольшой площади, оказывает значительное давление на земную кору, вызывая смещение ее пластов, микроземлетрясения. При сохранении сложившихся темпов роста населения и сосредоточения его в крупных промышленных городах в ближайшие десятилетия в несколько раз возрастет потребление энергетических и материальных ресурсов. Это вызовет необходимость разработки принципов освоения новых природных ресурсов, в том числе за счет использования месторождений морей и океанов. Вмешательство людей в естественные природные процессы резко возрастет и может способствовать изменению режима грунтовых и подземных вод, структуры почв, изменению микроклимата и т. п.