Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билет 1.docx
Скачиваний:
3
Добавлен:
21.09.2019
Размер:
346.57 Кб
Скачать

1) Несимметричная нагрузка

В общем случае при несимметричной нагрузке Zab ≠ Zbc ≠ Zca. Обычно она возникает при питании от трехфазнойсети однофазных приемников. Например, для нагрузки фазные токи, углы сдвига фаз и фазные мощности будут в общем случае различными.

Векторная диаграмма для случая, когда в фазе ab имеется активная нагрузка, в фазе bc – активно-индуктивная, а в фазе ca – активно-емкостная приведена на рис.

Построение векторов линейных токов произведено в соответствии с выражениями

İA = İab - İca; İB = İbc - İab; İC = İca - İbc.

Таким образом, при несимметричной нагрузке симметрия фазных токов İab, İbс, İca нарушается, поэтому линейные токи İA, İB, İC можно определить только расчетом по вышеприведенным уравнениям (3.20) или найти графическим путем из векторных диаграмм (рис. 3.16, 3.17).

Важной особенностью соединения фаз приемника треугольником является то, что при изменении сопротивления одной из фаз режим работы других фаз остается неизменным, так как линейные напряжения генератора являются постоянными. Будет изменяться только ток данной фазы и линейные токи в проводах линии, соединенных с этой фазой. Поэтому схема соединения треугольником широко используется для включения несимметричной нагрузки.

При расчете для несимметричной нагрузки сначала определяют значения фазных токов İab, İbc, İca и соответствующие им сдвиги фаз φab, φbc, φca. Затем определяют линейные токи с помощью уравнений в комплексной форме или с помощью векторных диаграмм.

2) См тетрадь

Билет 5

1) Симметричная нагрузка

При симметричной нагрузке

Zab = Zbc = Zca = Zejφ,

т.е. Zab = Zbc = Zca = Z, φab = φbc = φca = φ.

Так как линейные (они же фазные) напряжения UAB, UBC, UCA симметричны, то и фазные токи образуют симметричную систему

İab = Úab / Zab; İbc = Úbc / Zbc; İca = Úca / Zca.

Абсолютные значения их равны, а сдвиги по фазе относительно друг друга составляют 120°.

Линейные токи

İA = İab - İca; İB = İbc - İab; İC = İca - İbc

образуют также симметричную систему токов

На векторной диаграмме фазные токи отстают от фазных напряжений на угол φ (полагаем, что фазы приемника являются индуктивными, т.е. φ > 0°). Здесь принято, что напряжение UAB имеет нулевую фазу. Из диаграммы следует, что любой линейный ток больше фазного в раз. Линейный ток İA отстает по фазе от фазного тока İab на угол 30°, на этот же угол отстает İB от İbc, İC от İca.

Таким образом, при соединении треугольником действующее значение линейного тока при симметричной нагрузке в раз больше действующего значения фазного тока и UЛ = UФ; IЛ =IФ. При равномерной нагрузке фаз расчеттрехфазной цепи соединенной треугольником, можно свести к расчету одной фазы.

Фазное напряжение UФ = UЛ. Фазный ток IФ = UФ / ZФ, линейный ток IЛ =IФ, угол сдвига по фазе φ = arctg (XФ / RФ).

2) Основные определения и классификация электрических машин

Электрические машины являются основными элементами электрических установок. Они используются как источники (генераторы) электрической энергии, как двигатели, чтобы приводить в движение самые разнообразные рабочие механизмы на заводах и фабриках, в сельском хозяйстве, на строительных работах и т. д.

Электрические машины, предназначенные для преобразования механической энергии в электрическую, называются генераторами; электрические машины, предназначенные для обратного преобразования электрической энергии в механическую, называются двигателями.

Электрические машины применяются также для преобразования рода тока (например, переменного тока в постоянный), частоты и числа фаз переменного тока, постоянного тока одного напряжения в постоянный ток другого напряжения. Такие машины называются электромашинными преобразователями.

Электрическая машина имеет две основные части — вращающуюся, называемую ротором, и неподвижную, называемую статором (рис. 1-1).

К электрическим машинам относят также трансформатор. Трансформатор представляет собой статический электромагнитный аппарат, который служит для преобразования переменного тока одного напряжения в переменный ток другого напряжения, но той же частоты. Хотя он и не является

машиной (не имеет движущихся частей), все же его теория изучается вместе с теорией электрических машин, так как основные соотношения между величинами, характеризующими рабочий процесс трансформатора, применимы и к электрическим машинам.

Различают машины переменного и постоянного тока в зависимости от того, какой ток они генерируют или потребляют.

Машины переменного тока разделяются на синхронные и асинхронные. В тех и других машинах при их работе возникает вращающееся магнитное поле. Ротор синхронной машины вращается со скоростью, равной скорости вращения магнитного поля. Скорость вращения ротора асинхронной машины отличается от скорости вращения поля.

Машины переменного тока бывают однофазные и многофазные (чаще всего трехфазные); первые генерируют или потребляют однофазный ток, вторые — многофазный ток.

Машины постоянного тока, как правило, снабжаются коллектором, который здесь служит для получения на

щетках машины э. д. с, постоянно действующей в одном направлении. В то же время коллектор служит для переключения токов в частях обмотки ротора (якоря) таким образом, чтобы результирующая электромагнитных сил, получающихся от взаимодействия магнитного поля электромагнитов статора и токов в обмотке ротора, действовала на ротор все время в одном направлении;

Находят себе применение также асинхронные коллекторные машины переменного тока. Их ротор выполняется так же, как ротор машины постоянного тока. Они в отличие от бесколлекторных асинхронных машин позволяют плавно и экономично регулировать их скорость вращения. Однако область их применения весьма ограничена вследствие их высокой стоимости, сложности ухода за ними и относительно малой надежности в работе.

Приведенная здесь вкратце практическая классификация электрических машин не исчерпывает всего их многообразия. В дальнейшем при рассмотрении машин переменного и постоянного тока мы будем обращаться к различным их видам, различающимся как по назначению, так и по выполнению.

Билет 6

  1. Из всех возможных форм периодических токов и напряжений наибольшее распространение получили синусоидальные. По сравнению с другими синусоидальные токи и напряжения имеют то преимущество, что позволяют наиболее экономично осуществлять производство, передачу на расстояние и использование электрической энергии. Только при помощи синусоидальных токов удается сохранить неизменными формы кривых токов и напряжений на всех участках линейной ЭЦ.

В настоящее время производство и передача электрической энергии в во всех европейских странах (включая Россию) осуществляется при помощи трехфазного синусоидального тока с частотой 50 Герц, В СЩА и Японии- с частотой 60 Гц.

Различные области техники используют весьма широкий диапазон частот в зависимости от технических потребностей. В авиации, например, успешно применяется синусоидальный ток с частотой 400 Гц, т.к. при такой частоте снижаются габаритные размеры и вес авиационного оборудования. В электротехнологических установках используют диапазон от 500 Гц до 50 мГц. Частоты от нескольких сотен мегагерц до миллиарда Гц применяют в радиотехнике.

Мгновенные, средние и действующие значения синусоидальных напряжений и токов.

Синусоидальные напряжения и токи представляют собой величины, изменяющиеся во времени по синусоидальному закону (см. рис.2.1), т.е.

i (t)= Im Sin (ω t+ψ i), А,

u(t)= Um Sin (ω t+ψ u) ,В.

Рис. 2.1.

Максимальные из мгновенных значений синусоидальных величин называются их амплитудами (Im, Um).

Время, за которое совершается одно полное колебание, называется периодом Т.

Число периодов в секунду называется частотой (f) и измеряется в Герцах, т.е.

f=1/T, Гц.

Аргумент синусоидальной функции (ωt+ψ) ,

измеряемый в угловых единицах (радианах или градусах), называется фазой синусоиды.

Значение аргумента синусоидального тока или напряжения в начальный момент времени (t=0) называется начальной фазой (ψi, ψu). Начальная фаза определяется абсциссой ближайшей к началу отсчета точки перехода отрицательной полуволны тока или напряжения в положительную. Если эта точка находится слева от оси ординат, то начальная фаза считается положительной (ψ >0), если справа, то начальная фаза –отрицательна (ψ <0).

При совместном рассмотрении двух синусоидально изменяющихся величин одинаковой частоты вводится понятие фазового сдвига между ними.

Так фазовый сдвиг φ между напряжением и током равен разности начальных фаз напряжения и тока, т.е.

φ = ψu -ψi .

Если φ >0, то напряжение опережает по фазе ток; если φ <0, то напряжение отстает по фазе от тока (или ток опережает напряжение); если φ =0, то напряжение совпадает по фазе с током.

Для оценки эффективности действия периодического тока используют его тепловое или электродинамическое действие и сравнивают с аналогичным действием постоянного тока за один и тот же интервал времени, равный периоду тока Т.

Значение периодического тока, равное такому значению постоянного тока, который за время периода «Т» производит тот же самый тепловой или электродинамический эффект, что и периодический ток, называется действующим значением периодического тока. Действующие значения периодического тока , напряжения , ЭДС далее будем обозначать прописными буквами без индексов (I, U, E и т.п.).

Энергия, преобразуемая в тепло в резистивном элементе с сопротивлением R за время «Т» при протекании через него постоянного тока I, определяется выражением

WR_=I2RT.

За то же время в том же элементе при протекании периодического тока i (t) в виде тепла выделится энергия

Из равенства энергий найдем действующее значение периодического тока

Если ток меняется по синусоидальному закону и имеет амплитуду Im, то его действующее значение в соответствии с последней формулой равно

Аналогично находится действующее значение синусоидального напряжения.

Для измерения действующих значений напряжений и токов применяется электромагнитная, электродинамическая и другие системы приборов. Шкалы этих приборов проградуированы в действующих значениях и для определения амплитуды синусоидального напряжения или тока надо показания прибора умножить на  .

Под средним значением периодической функции f(t) понимают ее среднее значение за период «Т» , определяемое интегралом

Для синусоидальной функции времени среднее за период значение равно 0, т.к. площадь отрицательной полуволны компенсируется площадью положительной полуволны. Поэтому для характеристики синусоидальной во времени величины используется понятие среднего значения, соответствующего положительной полуволне синусоиды. Таким образом среднее значение синусоидального тока равно

Аналогично, среднее значение синусоидального напряжения определяется как

Мощность в цепях синусоидального тока.

Для характеристики мощности в цепи синусоидального тока используются понятия мгновенной, активной, реактивной и полной мощности.

Мгновенная мощность, характеризующая скорость изменения энергии в цепи в любой момент времени определяется выражением

p(t)=u(t) i (t)= Um Sin (ω t+ψ u) Im Sin (ω t+ ψ i)= UICos( ψ u- ψ i)- UICos(2 ω t+ ψ u+ ψ i ).

Как видно, выражение для мгновенной мощности содержит постоянную составляющую и переменную составляющую, меняющуюся с удвоенной частотой относительно частоты изменения напряжения и тока.

Среднее за период «Т» значение мощности, определяемое интегралом

называется активной мощностью и в нашем случае

P= UICosφ.

Эта мощность характеризует энергию, рассеиваемую за период питающего напряжения в виде тепла в резистивных элементах цепи, и измеряется в Ваттах. Видно, что средняя или активная мощность всегда положительна и равна постоянной составляющей мгновенной мощности.

При расчетах электрических цепей и на практике используется понятие реактивной мощности Q, которая вычисляется по формуле

Q = UISinφ , ВАР

и измеряется в вольт-амперах реактивных (ВАР). Эта мощность не связана с выделением энергии в элементах и характеризует максимальную скорость обмена энергии между источником и элементами, способными запасать энергию электрического или магнитного поля (индуктивные или емкостные элементы ЭЦ). Эта мощность определяет ток, связанный с обменом энергии. Протекание тока приводит к дополнительным потерям энергии в проводах линий передач. Поэтому реактивная мощность должна быть по возможности минимальной. Реактивная мощность может быть положительной, если φ >0 и отрицательной, если φ<0.

Величина S, равная произведению действующих значений тока и напряжения на зажимах ЭЦ, называется полной или кажущейся мощностью и измеряется в вольтамперах (ВА).

S= UI, ВАР.

Полная мощность равна амплитуде переменной составляющей мгновенной мощности (см.рис.2.1).

При расчетах мощностей в цепях переменного тока пользуются понятием коэффициента мощности

Cosφ =P/S ,

который характеризует долю средней или активной мощности P в полной мощности S. Чем меньше Cos φ при одинаковой активной мощности Р, тем больше ток и потери в устройствах передачи энергии. Повышение коэффициента мощности промышленных установок представляет собой важную техническую задачу.

На щитке любого источника переменного тока (генератора или трансформатора) указывается значение полной мощности S, представляющей предельную мощность установки. Только при Cosφ =1, т.е. при совпадении начальных фаз тока и напряжения, активная мощность становится равной полной мощности и, следовательно, мощность источника используется полностью.

  1. См тетрадь

Билет 7