Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по метрологии.doc
Скачиваний:
9
Добавлен:
22.09.2019
Размер:
1.32 Mб
Скачать

Лекция 5. (Продолжение л.4)

Вычислим вероятность попадания результата наблюдения в некоторый заданный интервал :

Заменим переменные:

после чего получим следующее выражение для искомой вероятности:

Интегралы, стоящие в квадратных скобках, не выражаются в элементарных функциях, поэтому их вычисляют с помощью так называемого нормированного нормального распределения с дифференциальной функцией

Далее приведены значения дифференциальной функции нормированного нормального распределения, а также интегральной функции этого распределения, определяемой как

С помощью функции Ф(z) вероятность находят как

При использовании данной формулы следует иметь в виду тождество

вытекающее непосредственно из определения функции Ф(z).

Широкое распространение нормального распределения погрешностей в практике измерений объясняется центральной предельной теоремой теории вероятностей, являющейся одной из самых замечательных математических теорем, в разработке которой принимали участие многие крупнейшие математики - Муавр, Лаплас, Гаусс, Чебышев и Ляпунов. Центральная предельная теорема утверждает, что распределение случайных погрешностей будет близко в нормальному всякий раз, когда результаты наблюдения формируются под влиянием большого числа независимо действующих факторов, каждый из которых оказывает лишь незначительное действие по сравнению с суммарным действием всех остальных.

1. Предположим, что результаты наблюдений распределены нормально, но их среднеквадратическое отклонение является величиной случайной, изменяющейся от опыта к опыту. Такое предположение более осторожное, чем предположение о неизменности в течение всего времени измерений. В этом случае, рассуждая таким же образом, как и прежде, легко найти, что энтропия обращается в максимум, если результаты наблюдений имеют распределение Лапласа с плотностью

(5.1)

где - математическое ожидание, - среднеквадратическое отклонение результатов наблюдения. Распределением Лапласа следует пользоваться в тех случаях, когда точностные характеристики заранее неизвестны или нестабильны во времени.

Дифференциальная функция распределения случайных погрешностей получается подстановкой и в предыдущее выражение:

Асимметрия распределения равна нулю, поскольку распределение симметрично относительно нуля, а эксцесс составляет:

(5.2)

Таким образом, по сравнению с нормальным распределением (Ех = 0) равномерное распределение является более плосковершинным (Ех = -1.2), а распределение Лапласа - более островершинным (Ех=3).

Оценка с помощью интервалов

Смысл оценки параметров с помощью интервалов заключается в нахождении интервалов, называемых доверительными, между границами которых с определенными вероятностями (доверительными) находятся истинные значения оцениваемых параметров.

Вначале остановимся на определении доверительного интервала для среднего арифметического значения измеряемой величины. Предположим, что распределение результатов наблюдений нормально и известна дисперсия . Найдем вероятность попадания результата наблюдений в интервал . Согласно формуле:

Но

и, если систематические погрешности исключены ,

Это означает, что истинное значение Q измеряемой величины с доверительной вероятностью находится между границами доверительного интервала .

Половина длины доверительного интервала называется доверительной границей случайного отклонения результатов наблюдений, соответствующей доверительной вероятности Р. Для определения доверительной границы (при выполнении перечисленных условий) задаются доверительной вероятностью, например Р=0.95 или Р=0.995 и по формулам

определяют соответствующее значение интегральной функции нормированного нормального распределения. Затем по данным находят значение коэффициента и вычисляют доверительное отклонение . Проведение многократных наблюдений позволяет значительно сократить доверительный интервал. Действительно, если результаты наблюдений (i=l, 2,..., n) распределены нормально, то нормально распределены и величины , а значит, и среднее арифметическое , являющееся их суммой. Поэтому имеет место равенство.

где определяется по заданной доверительной вероятности Р.

Полученный доверительный интервал, построенный с помощью среднего арифметического результатов n независимых повторных наблюдений, в раз короче интервала, вычисленного по результату одного наблюдения, хотя доверительная вероятность для них одинакова. Это говорит о том, что сходимость измерений растет пропорционально корню квадратному из числа наблюдений.

Половина длины нового доверительного интервала

(5.3)

называется доверительной границей погрешности результата измерений, а итог измерений записывается в виде

Теперь рассмотрим случай, когда распределение результатов наблюдений нормально, но их дисперсия неизвестна. В этих условиях пользуются отношением

(5.4)

называемым дробью Стьюдента. Входящие в нее величины и вычисляют на основании опытных данных; они представляют собой точечные оценки математического ожидания и среднеквадратического отклонения результатов наблюдений.

Плотность распределения этой дроби, впервые предсказанного Госсетом, писавшим под псевдонимом Стьюдент, выражается следующим уравнением:

(5.5)

где S(t, k) - плотность распределения Стьюдента. Величина k называется числом степеней свободы и равна n - 1. Вероятность того, что дробь Стьюдента в результате выполненных наблюдений примет некоторое значение в интервале , согласно выражению (5.5), вычисляется по формуле

или, поскольку S(t, k) является четной функцией аргумента t,

Подставив вместо дроби Стьюдента t ее выражение через и , получим окончательно

 (5.6)

Величины , вычисленные по формулам (5.5) и (5.6), были табулированы Фишером для различных значений доверительной вероятности Р в пределах 0.10 - 0.99 при В табл.5.1 приведены значения для наиболее часто употребляемых доверительных вероятностей Р.

Таким образом, с помощью распределения Стьюдента по формуле (5.6) может быть найдена вероятность того, что отклонение среднего арифметического от истинного значения измеряемой величины не превышает , например и т.д. Итог измерений записывается в виде

ПРИМЕР

При измерении ЭДС нормального элемента полечены следующие результаты:

N опыта

1

2

3

4

5

6

ЭДС

1,018456

1,018452

1,018453

1,018457

1,018455

1,018457

N опыта

7

8

9

10

11

12

ЭДС

1,018521

1,018456

1,018455

1,018454

1,018458

1,018457

Приняв доверительную вероятность р=0.99, определить результат, оценить случайную и относительную погрешности.

Для решения данной задачи предлагается следующая методика:

1. определяется неисправленный результат измерения

2. определяется относительная погрешность неисправленного результата измерений

3. вычисляем СКО погрешности неисправленного результата

3. исключаем явные промахи (аномальные результаты). Они не должны удовлетворять условию:

После исключения промахов (допустим, что их количество получилось r ) определяем те же величины для исправленного результата измерений.

Математическое ожидание:

Относительная погрешность:

СКО результата:

Вычисляем результат измерений, как:

,

где tp  - коэффициент Стьюдента.

Некоторые значения коэффициентов Стьюдента приведены в таблице:

                                                                                                                                                Таблица 5.1

Число измерений

Доверительная вероятность

0.9

0.95

0.99

2

6,31

12,72

63,7

3

2,92

4,3

9,92

4

2,35

3,18

5,84

5

2,13

2,78

4,6

6

2,02

2,57

4,03

7

1,94

2,48

3,71

8

1,9

2,37

3,5

9

1,86

2,31

3,36

10

1,83

2,26

3,25

15

1,75

2,15

2,92

20

1,72

2,08

2,84

30

1,7

2,05

2,73

Более 30

1,65

1,96

2,58

По приведенной методике определяем математическое ожидание неисправленного результата:

m’=12.221531/12=1.0184609.

Определяем относительную погрешность неисправленного результата i’:

1’

-4.8*10-6

5’

-5,79*10-6

9’

-5,79*10-6

2’

-8.74*10-6

6’

-3,83*10-6

10’

-6,77*10-6

3’

-7,76*10-6

7’

5,9*10-5

11’

-2,85*10-6

4’

-3,83*10-6

8’

-4,8*10-6

12’

-3,83*10-6

Определяем СКО неисправленного результата:

( ')=1,865*10-5.

Определяем границы, в которых находится результат измерения (выявляем явные промахи):

m’-m’*3 ( ')=1.0184039

m’+m’*3 ( ')=1.0185179.

По результатам измерений делаем вывод, что измерение № 7 является явным промахом и должно быть исключено из вычислений.

Определяем математическое ожидание исправленного результата:

m=1.0184553.

Определяем относительную погрешность исправленного результата di:

1

6.873*10-7

5

-2.95*10-7

9

-2.95*10-7

2

-3.24*10-6

6

1.67*10-6

10

-1.87*10-7

3

-2.26*10-6

7

-“-

11

2.65*10-6

4

1.67*10-6

8

6.873*10-7

12

1.67*10-6

Определяем СКО исправленного результата:

( ')=1,837*10-6.

Определяем результат измерения:

Х=1.837±5.7*10-8,  при доверительной вероятности р=0.99.