Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры КСЕ.docx
Скачиваний:
15
Добавлен:
24.09.2019
Размер:
160.53 Кб
Скачать

22.Современная химия.

Соврем химия это наука изучающая свойства и превращения веществ, сопровождается изменением их состава и строения. Химия это высокоупорядоченная система знаний о хим элементах и их соединениях, энергетики хим процессов, реакционной способности катализаторов и т.д. в современной химии выделяются: -органическая и неорганическая –аналитическая –физическая –нефтехимия –химия силикатов –химия эл. орг. соединений –биохимия –агрохимия –астрохимия –геохимия. Основные задачи современной химии: 1.получение веществ с заданными свойствами 2. Выявление способов управления свойствами вещества. С НТР связаны и успехи химической науки. Сейчас химия охватывает все новые и новые сферы органического и неорганического мира, проникает в области ряда смежных наук, формирует пограничные науки, обогащаясь методами и выводами этих наук. В условиях НТР появились новые направления химических наук: 1. элементоорганическая химия, находящаяся на грани органической и неорганической химии. Развитие этого направления открыло возможности создания новых полимеров металлоорга-нических и кремнийорганических соединений с совершенно немыслимыми ранее свойствами, а также возможности внедрения новых неизмеримо более простых и экономичных технологических методов получения полимеров; 2.химия комплексных соединений, позволяющая открыть многочисленный класс новых химических соединений. Она способствовала созданию промышленности драгоценных металлов и решению химических аспектов атомной энергии; 3.физико-химическая механика, связывающая механические и электрические свойства вещества с его химическим составом и строением; 4.биохимия, которая изучает структуру белка и белковых молекул, функции ферментов, исследует проблемы синтеза белка в организме, зависимости между химическим строением и биологическими функциями белков. История развития хим знаний: 1. Античная эпоха 2. Эпоха возрождения 3.классическая химия 4. 19в структурная химия 5. Неоклассическая химия. История развития химических знаний начинается с древних времен. Древнегреческие философы Демокрит (ок. 470 или 460 г. до н. э. – умер в глубокой старости) и его последователь Эпикур (341–270 до н. э.) – основоположники античной атомистики – высказали идею: все тела состоят из неделимых материальных частиц – атомов, различающихся формой и величиной. Натурфилософскому атомистическому учению о строении вещества противопоставлялась алхимия – донаучное направление в развитии химии, возникшее в III–IV вв. н. э. и получившее развитие в Западной Европе в XI–XVI вв. Основная цель алхимии – нахождение так называемого «философского камня» для превращения неблагородных металлов в золото и серебро, получения эликсира долголетия и т. д. В эпоху Возрождения результаты химических исследований все в большей степени стали использоваться в металлургии, стеклоделии, производстве керамики, красок. Первое научное определение химического элемента в 1661 г. сформулировал английский химик и физик Р. Бойль (1627–1691 гг.), положивший начало экспериментальному химическому анализу. В современном представлении химический элемент – совокупность атомов с одинаковым зарядом ядра. Основываясь на результатах своих экспериментов, Р. Бойль сделал важный вывод: качества и свойства вещества зависят от того, из каких химических элементов оно состоит. В те годы, а именно в 1861 г., выдающийся русский химик A.M. Бутлеров (1828–1886) создал и обосновал теорию химического строения вещества, согласно которой свойства веществ определяются порядком связей атомов в молекулах и их взаимным влиянием. Немного позднее – в 1869 г.– другой выдающийся русский химик– Д.И. Менделеев (1834– 1907) открыл периодический закон химических элементов – один из фундаментальных законов естествознания. Современная формулировка данного закона такова: свойства элементов находятся в периодической зависимости от заряда их атомных ядер. Молекулярный уровень современного естествознания позволяет создавать не только сверхпрочные, сверхпроводящие и другие материалы с необычными свойствами, но и производить операции с фрагментами молекулы ДНК, изменяя ее генетический код.