Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы(для меня).doc
Скачиваний:
3
Добавлен:
24.09.2019
Размер:
1.05 Mб
Скачать

14.Каковы условия и особенности использования при разработке моделей систем непрерывно-детерминированных моделей (d-схем)

Детерминированное моделирование отображает детерминированные процессы, т. е. процессы, в которых предполагается отсутствие всяких случайных воздействий. НДМ применимо там, где состояние системы изменяется непрерывно во времени по строго определенному закону.

Рассмотрим особенности непрерывно детерминированного подхода на примере, используя в качестве ММ дифференциальные уравнения.

Дифференциальными уравнениями называются такие уравнения, в которых неизвестными будут функции одной переменной или нескольких переменных, причём в уравнение входят не только их функции но их производные различных порядков.

Если неизвестные - функции многих переменных, то уравнения называются — уравнения в частных производных. Если неизвестные функции одной независимой переменной, то имеют место обыкновенные дифференциальные уравнения.

Математическое соотношение для детерминированных систем в общем виде:

(7).

где y'=dy/dt, y={y1, у2, ..., уп) и f=(f1,f2,…,fn) - n-мерные векторы; f(y, t) — вектор-функция, которая определена на некотором (п+ 1)-мерном (у, t) множестве и является непрерывной.

Так как математические схемы такого вида отражают динамику изучаемой системы, т. е.ее поведение во времени, то они называются D-схемами (англ. dynamic).

В простейшем случае обыкновенное дифференциальное уравнение имеет вид y'=f(y, t). (2.8)

Наиболее важно для системотехники приложение D-схем в качестве математического аппарата в теории автоматического управления.

Диф. уравнения, Д - схемы являются математическим аппаратом теории систем автоматического регулирования, управления.

При проектировании и эксплуатации систем САУ необходимо выбрать такие параметры системы, которые бы обеспечивали требуемую точность управления.

Следует отметить, что часто используемые в САУ системы диф. уравнений определяются путём линеаризацией управления объекта (системы), более сложного вида, имеющего нелинейности:

15.Каковы условия и особенности использования при разработке моделей систем дискретно-детерминированных моделей (f-схем)

Детерминированное моделирование отображает детерминированные процессы, т. е. процессы, в которых предполагается отсутствие всяких случайных воздействий. НДМ применимо там, где состояние система принимает состояния из некоторого набора по строго определенному закону, причем переход между состояниями осуществляется скачкообразно.

ДДМ являются предметом рассмотрения теории автоматов (ТА). ТА - раздел теоретической кибернетики, изучающей устройства, перерабатывающие дискретную информацию и меняющего свои внутренние состояния лишь в допустимые моменты времени. Соответственно особенности применения ДДМ базируются на особенностях применения КА.

F- схема: F=<z,x,y,,,z0>, (1)

где z,x,y - соответственно конечные множества входных, выходных сигналов (алфавитов) и конечное множество внутренних состояний (алфавита). z0Z - начальное состояние; (z,x) - функция переходов; (z,x) - функция выхода.

Автомат, построенный по такой схеме, и называется конечным и функционирует в дискретном автоматном времени, моментами которого являются такты, т.е. примыкающие друг к другу равные интервалы времени, каждому из которых соответствуют постоянные значения входного, выходного сигнала и внутреннего состояния. Абстрактный автомат имеет один входной и один выходной каналы.

В момент t, будучи в состоянии z(t), автомат способен воспринять сигнал x(t) и выдать сигнал y(t)=[z(t),x(t)], переходя в состояние z(t+1)=[z(t),z(t)], z(t)Z; y(t)Y; x(t)X. Абстрактный КА в начальном состоянии z0 принимая сигналы x(0), x(1), x(2) … выдаёт сигналы y(0), y(1), y(2)… (выходное слово).

Существуют F- автомат 1-ого рода (Миля), функционирующий по схеме:

z(t+1)= [z(t),z(t)], t=0,1,2… (1)

y(t)=[z(t),x(t)], t=0,1,2… (2)

  1. автомат 2-ого рода:

z(t+1)= [z(t),z(t)], t=0,1,2… (3)

y(t)=[z(t),x(t-1)], t=1,2,3… (4)

Автомат 2-ого рода, для которого y(t)=[z(t)], t=0,1,2,… (5)

т.е. функция выходов не зависит от входной переменной x(t), называется автоматом Мура.

Т.о. уравнения 1-5 полностью задающие F- автомат, являются частным случаем уравнения

(6)

где - вектор состояния, - вектор независимых входных переменных, - вектор воздействий внешней среды, - вектор собственных внутренних параметров системы, - вектор начального состояния, t - время; и уравнения

, (7)

когда система S - денорминированная и на её вход поступает дискретный сигнал x.