Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора одноразовая.docx
Скачиваний:
1
Добавлен:
24.09.2019
Размер:
524.49 Кб
Скачать

21)Есть

22) Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами. Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю.Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения. Существуют несколько эквивалентных формулировок второго начала термодинамики: Постулат Клаузиуса«Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему»[1] (такой процесс называется процессом Клаузиуса). Постулат Томсона (Кельвина)«Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона). Эквивалентность этих формулировок легко показать. В самом деле, допустим, что постулат Клаузиуса неверен, то есть существует процесс, единственным результатом которого была бы передача тепла от более холодного тела к более горячему. Тогда возьмем два тела с различной температурой (нагреватель и холодильник) и проведем несколько циклов тепловой машины, забрав тепло   у нагревателя, отдав   холодильнику и совершив при этом работу  . После этого воспользуемся процессом Клаузиуса и вернем тепло   от холодильника нагревателю. В результате получается, что мы совершили работу только за счет отъёма теплоты от нагревателя, то есть постулат Томсона тоже неверен.С другой стороны, предположим, что неверен постулат Томсона. Тогда можно отнять часть тепла у более холодного тела и превратить в механическую работу. Эту работу можно превратить в тепло, например, с помощью трения, нагрев более горячее тело. Значит, из неверности постулата Томсона следует неверность постулата Клаузиуса.Таким образом, постулаты Клаузиуса и Томсона эквивалентны.Другая формулировка второго начала термодинамики основывается на понятии энтропии:«Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии).

23) Из рассмотренного цикла Карно (п. 5.4) видно, что равны между собой отношения теплот к температурам, при которых они были получены или отданы в изотермическом процессе:

 

.

 

 

Отношение теплоты Q в изотермическом процессе к температуре, при которой происходила передача теплоты, называется приведенной теплотой  :

 

.

 

(6.1.1)

       Для подсчета приведенной теплоты в произвольном процессе необходимо разбить этот процесс на бесконечно малые участки, где Т можно считать константой. Приведенная теплота на таком участке будет равна           Суммируя приведенную теплоту на всех участках процесса, получим:

 

.

 

 

       Тогда в обратимом цикле Карно (п. 5.3, 5.4) имеем:

 

 

 

Этот результат справедлив для любого обратимого процесса. 

24) Энтропи́я (от др.-греч. ἐντροπία - поворот, превращение) — в естественных науках мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике — мера вероятности осуществления какого-либомакроскопического состояния; в теории информации — мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит, и количество информации; в исторической науке, для экспликации феноменаальтернативности истории (инвариантности и вариативности исторического процесса). Энтропия в информатике — степень неполноты, неопределённости знаний. Понятие энтропии впервые было введено Клаузиусом в термодинамике в 1865 году для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно. ,где   — приращение энтропии;   — минимальная теплота, подведенная к системе; T — абсолютная температура процесса;

25) Неравенство Клаузиуса (1854): Количество теплоты, полученное системой при любом круговом процессе, делённое на абсолютную температуру, при которой оно было получено (приведённое количество теплоты), неположительно.

Подведённое количество теплоты, квазистатически полученное системой, не зависит от пути перехода (определяется лишь начальным и конечным состояниями системы) - для квазистатических процессов неравенство Клаузиуса обращается в равенство[1].

26) 1. Утверждение второго закона (начала) термодинамики о невозможности убывания энтропии в изолированной системе может быть истолковано статически, на основе молекулярно-кинетической теории строения вещества, с помощью формулы Больцмана: S=kLnP+const , где S - энтропия системы, k - постоянная Больцмана, P- термодинамическая вероятность состояния.2. Термодинамическая вероятность состояния P тела (системы) равна числу всевозможных распределений частиц по координатам и скоростям, соответствующих данному термодинамическому состоянию. По определению, P- есть целое число не меньшее единицы (P≥1). Из формулы Больцмана вытекает следующее статистическое истолкование второго закона термодинамики: термодинамическая вероятность состояния замкнутой системы при всех происходящих в ней процессах не может убывать.При любом процессе, который протекает в замкнутой системе и переводит ее из состояния 1 в состояние2. изменение ΔP термодинамической вероятности P положительно или равно нулю: ΔP=P2-P1≥ 0.В случае обратимого процесса ΔP =0, т.е. термодинамическая вероятность P-постоянна. Если происходит необратимый процесс, то ΔР>0 и Р возрастает. Это означает, что необратимый процесс переводит систему из менее вероятного состояния в более вероятное, в пределе - равновесное состояние. 3. Второе начало термодинамики, будучи статистическим законом. Описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систему. В системах, состоящих из небольшого числа частиц. Наблюдаются флуктуации, которые являются отклонениями от второго закона термодинамики. 4. Второе начало термодинамики, установленное для замкнутых систем на Земле, не может быть распространено на всю бесконечную Вселенную. Такое распространение приводит к неправильному в философской и физической точек зрения выводу о том, что температура всех тел во Вселенной должна выровняться. При этом все формы движения, кроме хаотического теплового движения, должны прекратиться - должна наступить так называемая "тепловая смерть" Вселенной. В действительности, в связи с бесконечностью Вселенной в некоторых ее частях неизбежны флуктуации, которые нарушают тепловое равновесие. Продолжительность и величина этих флуктуаций могут быть весьма значительными. Доказано, что для бесконечной Вселенной не может быть равновесного состояния, соответствующего "тепловой смерти".

27) Третье начало термодинамики (теорема Нернста) — физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю. Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных. Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система».

или где   — любой термодинамический параметр. Третье начало термодинамики относится только к равновесным состояниям. Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение): , третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю. Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики). В классической термодинамике энтропия может быть определена лишь с точностью до произвольной аддитивной постоянной  , что не мешает термодинамическим исследованиям, так как реально измеряется разность энтропий   в различных состояниях. Согласно третьему началу термодинамики, при   значение  .

      

13) Есть

14) Для любого идеального газа справедливо соотношение Майера: , где   — универсальная газовая постоянная  — молярная теплоёмкость при постоянном давлении,   — молярная теплоёмкость при постоянном объёме. Уравнение Майера вытекает из первого начала термодинамики, примененного к изобарному процессу в идеальном газе: ,в рассматриваемом случае: . Очевидно, уравнение Майера показывает, что различие теплоёмкостей газа равно работе, совершаемой одним молем идеального газа при изменении его температуры на 1 K, и разъясняет смысл универсальной газовой постоянной   — механический эквивалент теплоты.

15) Адиабати́ческий, или адиаба́тный проце́сс (от др.-греч. ἀδιάβατος — «непроходимый») — термодинамический процесс в макроскопической системе, при котором система не обменивается тепловой энергией с окружающим пространством . Адиабатический процесс является частным случаем политропного процесса, так как при нём теплоёмкость газа равна нулю и, следовательно, постоянна[2]. Адиабатические процессы обратимы только тогда, когда в каждый момент времени система остаётся равновесной (например, изменение состояния происходит достаточно медленно) и изменения энтропии не происходит. Некоторые авторы (в частности, Л. Д. Ландау) называли адиабатическими только квазистатическиеадиабатические процессы. Адиабатический процесс для идеального газа описывается уравнением Пуассона. Линия, изображающая адиабатный процесс на термодинамической диаграмме, называется адиабатой. Адиабатическими можно считать процессы в целом ряде явлений природы. Так же такие процессы получили ряд применений в технике. Для идеальных газов, чью теплоёмкость можно считать постоянной, в случае квазистатического процесса адиабата имеет простейший вид и определяется уравнением[6][15][16] где   — его объём  — показатель адиабаты,   и   — теплоёмкости газа соответственно при постоянном давлении и постоянном объёме.С учётом уравнения состояния идеального газа уравнение адиабаты может быть преобразовано к виду где   — абсолютная температура газа. Или к виду Поскольку   всегда больше 1, из последнего уравнения следует, что при адиабатическом сжатии (то есть при уменьшении  ) газ нагревается (  возрастает), а при расширении — охлаждается, что всегда верно и для реальных газов. Нагревание при сжатии больше для того газа, у которого больше коэффициент  .

16) Круговым процессом (или циклом) называется процесс, при котором система, проходя через ряд состояний, возвращается в первоначальное. На диаграмме цикл изображается замкнутой кривой (рис. 1). Цикл, который совершает идеальный газ, можно разбить на процессы расширения (1—2) и сжатия (2—1) газа. Работа расширения (равна площади фигуры 1a2V2V11) положительна (dV>0), работа сжатия (равна площади фигуры 2b1V1V22) отрицательна (dV<0). Следовательно, работа, которую совершает газ за цикл, равен площади, охватываемой замкнутой кривой. Если за цикл совершается положительная работа A=∫pdV>0 (цикл идет по часовой стрелке), то он называется прямым (рис. 1, а), если за цикл осуществляется отрицательная работа A=∫pdV<0 (цикл идет против часовой стрелки), то он называется обратным (рис. 1, б).  Рис.1 Прямой цикл применяется в тепловых двигателях — периодически действующих двигателях, которые совершают работу за счет полученной извне теплоты. Обратный цикл применяется в холодильных машинах — периодически действующих установках, в которых за счет работы внешних сил теплота переходит к телу с более высокой температурой.  В результате кругового процесса система возвращается в исходное состояние и, значит, полное изменение внутренней энергии газа есть нуль. Поэтому первое начало термодинамики для кругового процесса   (1) т. е. работа, которая совершается за цикл, равна количеству теплоты, полученной извне. Однако в результате кругового процесса система может теплоту как получать, так и отдавать, поэтому  

17) Прямые и обратные циклы в необратимом случае имеют то существенное различие, что в прямых циклах предельное значение целевого потока ( мощности) ограничено. С увеличением потока подводимого тепла мощность первоначально возрастает до своего максимального значения, а затем из-за роста необратимых потерь уменьшается. В обратных же циклах, интенсивность целевого потока ( тепла) монотонно растет с ростом затрачиваемой мощности. Для реализации прямых и обратных циклов необходимо два источника теплоты, одним из которых, как правило, является окружающая среда. [2] Рассмотрение особенностей прямых и обратных циклов показывает, что для их осуществления необходимо соблюсти определенные условия. [3] Дается общий метод сопоставления действительных прямых и обратных циклов, подчеркивающий принципиальное сходство задач, относящихся как к теплоэнергетике, так и к холодильной технике. Широко используется понятие об обратимости термодинамических процессов. [4] Уделено внимание основным положениям о прямых и обратных циклах, об эксергии, термодинамике плазмы, непосредственного преобразования теп / оты в электрическую энергию. Изложены основы химической термсдннамики, растворов, истечения из сосудов неограниченной и ограниченной вместимости, приведены элементы статистической термодинамики. [5]Выбор этих величин в качестве характеристик прямых и обратных циклов при их сопоставлении наряду с фиксированием интервала температур имеет существенное значение. [6]Выбор этих величин в качестве характеристик прямых и обратных циклов при их сопоставлении, наряду с фиксированным интервалом температур, имеет существенное значение. [7]Чаще всего подвод и отвод тепла в прямых и обратных циклах протекают изобарно. В этом случае определение значений среднепланиметрических температур не требует планиметрирования. [8] Чаще всего подвод и отвод тепла в прямых и обратных циклах протекает изобарически. В этом случае подсчет численных значений среднепланиметрических температур сводится к чрезвычайно простой операции и не требует планиметрирования. Конечным результатом любого из рассмотренных круговых процессов ( прямого и обратного цикла Карно) является обмен теплотой между двумя телами разной температуры и взаимное преобразование теплоты и работы. Оба эти эффекта органически связаны между собой и поэтому не могут быть оторваны один от другого. Переход от прямого цикла к обратному приводит только к одновременному изменению направления обоих этих эффектов: в прямом процессе теплота переносится от нагретого тела к холодному и происходит преобразование теплоты в работу; в обратном процессе теплота переносится от холодного тела к нагретому и происходит преобразование работы в теплоту. 

18) Тепловой двигатель - это периодически действующий двигатель, совершающий работу за счет полученной извне теплоты. Термостатом называется термодинамическая система, которая может обмениваться теплотой с телами практически без изменения собственной температуры. Рабочее тело - это тело, совершающее круговой процесс и обменивающееся энергией с другими телами. Принцип работы теплового двигателя: от термостата с более высокой температурой T1, называемого нагревателем, за цикл отнимается количество теплоты Q1, а термостату с более низкой температурой T2, называемому холодильником, за цикл передается количество теплоты Q2. При этом совершается работа A=Q1-Q2 (рис. 18).    Рис 18. Схема теплового двигателя и холодильной машины Термический КПД двигателя: η=A/Q1=(Q1-Q2)/Q1=1-(Q2-Q1) Чтобы КПД был равен 1, необходимо, чтобы Q2=0, а это запрещено вторым началом термодинамики.  Процесс, обратный происходящему в тепловом двигателе, используется в холодильной машине: от термостата с более низкой температурой T2 за цикл отнимается количество теплоты Q2 и отдается термостату с более высокой температурой T1. При этом Q=Q1-Q2=A или Q1=Q2+A. Количество теплоты Q1, отданное системой термостату T1, больше количества теплоты Q2, полученного от термостата T2, на величину работы, совершенной над системой. Эффективность холодильной машины характеризует холодильный коэффициент η' - отношение отнятой от термостата с более низкой температурой количества теплоты Q2 к работе A, которая затрачивается на приведение холодильной машины в действие:  η'=Q2/A=Q2/(Q1-Q2). (69)

19) Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов. Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году. Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется. Пусть тепловая машина состоит из нагревателя с температурой  , холодильника с температурой   и рабочего тела. Цикл Карно состоит из четырёх стадий: 1Изотермическое расширение (на рисунке — процесс A→Б). В начале процесса рабочее тело имеет температуру  , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты  . При этом объём рабочего тела увеличивается.2Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.3Изотермическое сжатие (на рисунке — процесс В→Г). Рабочее тело, имеющее к тому времени температуру  , приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты  .4Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия  при  Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).

20) Первая теорема (более известна как формула Карно)

Первая теорема Карн Пусть дан произвольный треугольник ABC. Тогда сумма алгебраических расстояний (англ.) от центра описанной окружности D до сторон треугольника ABC будет равна  , где r — радиус вписанной окружности, а R — описанной. Знак расстояния принимается отрицательным тогда и только тогда, когда отрезок DX (X = F, G, H) целиком лежит вне треугольника. В ее доказательстве используется теорема Птолемея.Вторая теорема (известная также как критерий Карно) Пусть дан треугольник АВС и точки А1, В1, С1 на плоскости. Тогда перпендикуляры, опущенные из А1, В1, С1 на ВС, АС, ВС соответственно, пересекаются в одной точке тогда и только тогда, когда  .Следствие Перпендикуляры, опущенные из А1, В1, С1 на AB, АС, ВС соответственно, пересекаются в одной точке тогда и только тогда, когда перпендикуляры, опущенные из А, В, С на В1С1, А1С1, В1С1 соответственно, пересекаются в одной точке.

1) Термодинамическая система — это некая физическая система, состоящая из большого количества частиц, способная обмениваться с окружающей средой энергией и веществом. Также обычно полагается, что такая система подчиняется статистическим закономерностям. Для термодинамических систем справедливы законы термодинамики. Термодинамические системы подразделяются на однородные по составу (например, газ в сосуде) и неоднородные (вода и пар или смесь газов в сосуде). Выделяют также изолированные системы, то есть системы, которые не обмениваются с окружающей средой ни энергией, ни веществом, и закрытые системы, которые обмениваются со средой только энергией, но не обмениваются веществом. Если же в системе происходят обменные процессы с окружающей средой, то её называют открытой.

2) Тепловой процесс (термодинамический процесс) — изменение макроскопического состояния термодинамической системы. Система, в которой идёт тепловой процесс, называется рабочим телом. Тепловые процессы можно разделить на равновесные и неравновесные. Равновесным называется процесс, при котором все состояния, через которые проходит система, являются равновесными состояниями. Тепловые процессы можно разделить на обратимые и необратимые. Обратимым называется процесс, который можно провести в противоположном направлении через все те же самые промежуточные состояния. Можно выделить несколько простых, но широко распространённых на практике, тепловых процессов: адиабатный процесс, изобарический процесс, изотермический процесс, изохорический процесс,изоэнтальпийный процесс и изоэнтропийный процесс.

3) Равнове́сный тепловой процесс  тепловой процесс, в котором система проходит непрерывный ряд бесконечно близких равновесных термодинамических состояний. Равновесный тепловой процесс называется обратимым, если его можно провести обратно и в телах, окружающих систему, не останется никаких изменений. Реальные процессы изменения состояния системы всегда происходят с конечной скоростью, поэтому не могут быть равновесными. Реальный процесс изменения состояния системы будет тем ближе к равновесному, чем медленнее он совершается, поэтому равновесные процессы называют квазистатическими. Примеры - Изотермический процесс, при котором температура системы не изменяется (T=const) Изохорный процесс, происходящий при постоянном объёме системы (V=const)Изобарный процесс, происходящий при постоянном давлении в системе (P=const). Неравновесные процессы, в термодинамике и статистической физике - физические процессы, включающие неравновесные состояния. Примеры: процесс установления равновесия (термодинамического или статистического) в системе, находившейся ранее в неравновесном состоянии; переход системы из равновесного состояния в неравновесное или из одного неравновесного состояния в другое под влиянием внешних возмущений. В неизолированных системахНеравновесные процессы могут протекать стационарно (без изменения физического состояния системы, пример - теплопередача теплопроводностью при постоянной разности температур). Неравновесные процессы являютсянеобратимыми процессами, связанными с производством энтропии.

4) Обратимый процесс (то есть равновесный) — термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.Обратимые процессы дают наибольшую работу. Бо́льшую работу от системы вообще получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.

5) Вну́тренняя эне́ргия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход. Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии: где  — подведённая к телу теплота, измеренная в джоулях [1] — работа, совершаемая телом против внешних сил, измеренная в джоулях

6)

Это и есть закон Больцмана о равномерном распределении средней кинетической энергии по степеням свободы. Если система находится в состоянии термодинамического равновесия, при температуре Т, то средняя кинетическая энергия равномерно распределена между всеми степенями свободы. На каждую поступательную iп и вращательную iвр степени свободы приходится энергия 1/2 kT. Для колебательной iкол, степени свободы она равна kT. Таким образом число степеней свободы i = iп + iвр + 2iкол 

7) Тела, участвующие при протекании т/д процесса обмениваются энергией. Передача энергии от одного тела к другому происходит двумя способами. 1-й способ реализуется при непосредственном контакте тел, имеющих различную температуру, путем обмена кинетической энергией между молекулами соприкасающихся тел либо лучистым переносом внутренней энергииизлучающих тел путем э/м волн. При этом энергия передается от более нагретого к менее нагретому. Количество энергии, переданной 1-м способом от одного тела к другому, называется количеством теплоты – Q [Дж], а способ – передача энергии в форме теплоты. 2-й способ связан с наличием силовых полей или внешнего давления. Для передачи энергии этим способом тело должно либо передвигаться в силовом поле, либо изменять свой объем под действием внешнего давления, То есть передачи энергии происходит при условии перемещения всего тела или его части в пространстве. При этом количество переданной энергии называется работой – L [Дж], а способ передача энергии в форме работы. Количество энергии, полученное телом в форме работы называется работой совершенной над телом, а отданную энергию – затраченной телом работой. Количество теплоты, полученное (отданное) телом и работа, совершенная (затраченная) над телом, зависят от условий перехода тела из начального состояния в конечное, т.е. зависят от характера т/д процесса.

8) Работа при изобарном расширении газа. Одним из основных термодинамических процессов, совершающихся в большинстве тепловых машин, является процесс расширения газа с совершением работы. Легко определить работу, совершаемую при изобарном расширении газа. Если при изобарном расширении газа от объема V1 до объема V2 происходит перемещение поршня в цилиндре на расстояние l (рис. 106), то работа A', совершенная газом, равна  , (33.1) где p — давление газа,  — изменение его объема.

9) Коли́чество теплоты́ — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основных термодинамических величин. Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние. Единица измерения: Джоуль Дж.

10 И 13) Теплоемкость идеального газа — это отношение количества теплоты, сообщенного газу, к изменению температуры δТ, которое при этом произошло.

11) Первое начало термодинамики обычно формулируется в виде утверждения: При переходе из состояния 1 в состояние 2 поглощенное телом тепло расходуется на совершение механической работы и увеличение внутренней энергии системы:  - изменение внутренней энергии системы). Во-первых, оно означает введение новой величины - внутренней энергии системы, которая может увеличиваться или уменьшаться в зависимости от соотношения поглощенного тепла и произведенной работы.Во-вторых, в нем содержится так называемый принцип эквивалентности тепла и механической работы. Этот принцип заключается в том, что тепло и работа являются различными формами энергообмена системы с окружающей средой. Одно и то же изменение внутренней энергии системы может быть достигнуто за счет совершения работы без поглощения или выделения тепла (в адиабатическом процессе) либо за счет теплообмена без совершения работы (в изохорном процессе). В результате поглощения тепла система может совершать полезную работу, и наоборот - внешняя работа при определенных условиях может приводить к выделению системой тепла. Эквивалентность тепла и работы с сегодняшних позиций представляется очевидной. Действительно, нагревание тел в результате трения было известно с первобытных времен. Однако ясное научное понимание взаимосвязи тепловых и механических явлений было достигнуто лишь к середине прошлого столетия. В-третьих, первое начало термодинамики представляет собой обобщенный закон сохранения энергии, который утверждает, что во всех процессах перехода энергии из тепловой формы в механическую и наоборот разница между поглощенным теплом и произведенной работой в точности покрывается изменением внутренней энергии системы.

12) Изохорный процесс (V=const). Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат (рис. 1), где процесс 1—2 есть изохорное нагревание, а 1—3 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.    Из первого начала термодинамики (δQ=dU+δA) для изохорного процесса следует, что вся теплота, которая сообщается газу, идет на увеличение его внутренней энергии:   т.к. CV=dUm/dt,    Тогда для произвольной массы газа получим   (1)  Изобарный процесс (p=const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, которая параллельна оси V. При изобарном процессе работа газа при увеличения объема от V1 до V2 равна   (2)  и равна площади заштрихованного прямоугольника (рис. 2). Если использовать уравнение Менделеева-Клапейрона для выбранных нами двух состояний, то   и    откуда    Тогда выражение (2) для работы изобарного расширения примет вид   (3) Из этого выражения вытекает физический смысл молярной газовой постоянной R: если T2 —T1 = 1К, то для 1 моль газа R=A, т. е. R численно равна работе изобарного расширения 1 моль идеального газа при нагревании его на 1 К.  Рис.1 В изобарном процессе при сообщении газу массой m количества теплоты    его внутренняя энергия возрастает на величину (т.к. CV=dUm/dt)    При этом газ совершит работу, определяемую выражением (3).  Изотермический процесс (T=const). Изотермический процесс описывается законом Бойля—Мариотта:  Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу, которая расположена на диаграмме тем выше, чем выше температура, при которой происходит процесс.  Исходя из формул для работы газа и уравнения Менделеева-Клайперона найдем работу изотермического расширения газа:   Так как при Т=const внутренняя энергия идеального газа не изменяется:   то из первого начала термодинамики (δQ=dU+δA) следует, что для изотермического процесса   т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:   (4) Значит, для того чтобы при расширении газа температура не становилась меньше, к газу в течение изотермического процесса необходимо подводить количество теплоты, равное внешней работе расширения.