Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
инф ответы 1-21.docx
Скачиваний:
59
Добавлен:
24.09.2019
Размер:
1.23 Mб
Скачать

12. Численное решение уравнения методом простых итераций. Эффективность данного алгоритма. Привести фрагмент программы, поясняющий данный алгоритм. Метод простых итераций

В ряде случаев весьма удобным приемом уточнения корня уравнения является метод последовательных приближений (метод итераций).

Пусть с точностью   необходимо найти корень уравнения f(x)=0, принадлежащий интервалу изоляции [a,b]. Функция f(x) и ее первая производная непрерывны на этом отрезке.

Для применения этого метода исходное уравнение f(x)=0 должно быть приведено к виду

(4.2)

В качестве начального приближения 0 выбираем любую точку интервала [a,b].

Далее итерационный процесс поиска корня строится по схеме:

(4.3)

В результате итерационный процесс поиска реализуется рекуррентной формулой (4.3). Процесс поиска прекращается, как только выполняется условие

(4.4)

или число итераций превысит заданное число N.

Для того, чтобы последовательность х1, х2,…, хn приближалась к искомому корню, необходимо, чтобы выполнялось условие сходимости:

(4.5)

Рис. 4.6.  Геометрический смысл метода

Переходим к построению схемы алгоритма (рис. 4.7). Вычисление функции   оформим в виде подпрограммы.

Рис. 4.7.  Схема алгоритма уточнения корня методом итераций

13. Численное интегрирование методом прямоугольников. Эффективность данного алгоритма. Привести фрагмент программы, поясняющий данный алгоритм. Метод прямоугольников

Словесный алгоритм метода прямоугольников:

  1. Весь участок [a,b] делим на n равных частей с шагом h=(b-a)/n.

  2. Определяем значение yi подынтегральной функции f(x) в каждой части деления, т.е.

  1. В каждой части деления подынтегральную функцию f(x) аппроксимируем интерполяционным многочленом степени n = 0, т.е. прямой, параллельной оси OX. В результате вся подынтегральная функция на участке [a,b] аппроксимируется ломаной линией.

  2. Для каждой части деления определяем площадь Si частичного прямоугольника.

  3. Суммируем эти площади. Приближенное значение интеграла I равно сумме площадей частичных прямоугольников.

Если высота каждого частичного прямоугольника равна значению подынтегральной функции в левых концах каждого шага, то метод называется методом левых прямоугольников (рис.12.3). Тогда квадратурная формула имеет вид

Рис. 12.3.  Метод левых прямоугольников

Если высота каждого частичного прямоугольника равна значению подынтегральной функции в правых концах каждого шага, то метод называется методом правых прямоугольников (рис.12.4). Тогда квадратурная формула имеет вид

Рис. 12.4.  Метод правых прямоугольников

Точность каждого метода прямоугольников имеет порядок h.

Алгоритм вычисления интеграла построим в виде итерационного процесса поиска с автоматическим выбором шага. На каждом шаге будем уменьшать шаг в два раза, то есть увеличивать число шагов n в два раза. Выход из процесса поиска организуем по точности вычисления интеграла. Начальное число шагов n=2.Схема алгоритма методов прямоугольников представлена на рис.12.5.

Рис. 12.5.  Схема алгоритма метода прямоугольников (с автоматическим выбором шага)

Условные обозначения:

a,b - концы интервала,

 - заданная точность,

с=0 - метод левых прямоугольников,

с=1 - метод правых прямоугольников,

S1 - значение интеграла на предыдущем шаге,

S - значение интеграла на текущем шаге.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]