Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все БИЛЕТЫ(22,23 Витя скинет позже).docx
Скачиваний:
8
Добавлен:
24.09.2019
Размер:
213.04 Кб
Скачать

Вопрос 2

В режиме короткого замыкания, на первичную обмотку трансформатора подается переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такой, чтобы ток короткого замыкания равнялся номинальному (расчетному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить умножив напряжение короткого замыкания на ток короткого замыкания.

Билет 9

Вопрос 1

Резистор — структурный элемент электрической цепи, основной функциональным свойством которого является определённое (номинальное) активное сопротивление.

Выделяются следующие функциональные виды резисторов:

Постоянные резисторы

резисторы, обладающие неизменным сопротивлением (в границах погрешности).

Переменные и подстроечные резисторы (реостаты)

резисторы сопротивление которых изменяется механически, посредством рукоятки или другого органа управления (переменные), либо посредством вставляемого в шлиц инструмента.

Варисторы

резисторы, сопротивление которых зависит от приложенного напряжения.

Терморезисторы и термисторы

резисторы, у которых используется зависимость сопротивления от температуры, с положительным (терморезисторы) или отрицательным (термисторы) ТКС.

Фоторезисторы

резисторы, обладающие зависимостью сопротивления от освещения.

13 — фоторезистор,

1 4 — переменный резистор, реостат, общее обозначение,

15 — переменный резистор,

16 — переменный резистор с отводами,

17 — подстроечный резистор-потенциометр;

18 — терморезистор с положительным температурным коэффициентом прямого нагрева (подогрева),

19 — варистор,

23 — резистор постоянный, общее обозначение;

24 — резистор постоянный с номинальной мощностью 0, 05 Вт;

25 — резистор постоянный с номинальной мощностью 0, 125 Вт,

26 — резистор постоянный с номинальной мощностью 0, 25 Вт,

27 — резистор постоянный с номинальной мощностью 0, 5 Вт,

28 — резистор постоянный с номинальной мощностью 1 Вт,

29 — резистор постоянный с номинальной мощностью рассеяния 2 Вт,

30 — резистор постоянный с номинальной мощностью рассеяния 5 Вт;

31 — резистор постоянный с одним симметричным дополнительным отводом;

32 — резистор постоянный с одним несимметричным дополнительным отводом;

Вопрос 2

Когда вторичные обмотки ни к чему не подключены (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью[14] компенсирует напряжение источника питания, поэтому ток через первичную обмотку невелик. Для трансформатора с сердечником из магнитомягкого материала (например, ферромагнитного материала, например, из трансформаторной стали) ток холостого хода характеризует величину потерь в сердечнике на вихревые токи и на гистерезис. Мощность потерь можно вычислить умножив ток холостого хода на напряжение, подаваемое на трансформатор.

Для трансформатора без ферромагнитного сердечника потери на перемагничивание отсутствуют, а ток холостого хода определяется сопротивлением индуктивности первичной обмотки, которое пропорционально частоте переменного тока и величине индуктивности.

Векторная диаграмма напряжений и токов в трансформаторе на холостом ходу при согласном включении обмоток приведена в [15] на рис.1.6 б).

Напряжение на вторичной обмотке в первом приближении определяется законом Фарадея

Билет 10

1 ) Электри?ческая проводи?мость (электропроводность, проводимость) — это способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению. В СИ единицей измерения электрической проводимости является сименс (называемая также в некоторых странах Мо)

2)Принцип действия и устройство трансформатора

Действие трансформатора основано на явлении взаимной индукции. Если первичную обмотку трансформатора включить в сеть источника переменного тока, то по ней будет протекать переменный ток, который создаст в сердечнике трансформатора переменный магнитный поток. Этот магнитный поток, пронизывая витки вторичной обмотки, будет индуктировать в ней э. д. с. Если вторичную обмотку замкнуть на какой-либо приемник энергии (на рис. 1-лампа накаливания), то под действием индуктируемой э. д. с. по этой обмотке и через приемник энергии начнет протекать ток

Одновременно в первичной обмотке также появится нагрузочный ток , который в сумме с током I0 составит ток первичной обмотки. Таким образом, электрическая энергия, трансформируясь, передается из первичной сети во вторичную при напряжении, на которое рассчитан приемник энергии, включенный во вторичную сеть.

В целях улучшения магнитной связи между первичной и вторичной обмотками их помещают на стальной магнитопровод. Обмотки изолируют как друг от друга, так и от магнитопровода. Обмотка более высокого напряжения называется обмоткой высшего напряжения (ВН), а обмотка более низкого напряжения - обмоткой низшего напряжения (НН). Обмотка, включенная в сеть источника электрической энергии, называется первичной; обмотка, от которой энергия подается к приемнику, - вторичной.

Обычно напряжения первичной и вторичной обмоток неодинаковы. Если первичное напряжение меньше вторичного, трансформатор называется повышающим, если больше вторичного - понижающим. Любой трансформатор может быть использован и как повышающий, и как понижающий. Повышающие трансформаторы применяют для передачи электроэнергии на большие расстояния, а понижающие - для ее распределения между потребителями.

В трехобмоточных трансформаторах на магнитопровод помещают три изолированные друг от друга обмотки. Такой трансформатор, питаемый со стороны одной из обмоток, дает возможность получать два различных напряжения и снабжать электрической энергией две различные группы приемников. Кроме обмоток высшего и низшего напряжения трехобмоточный трансформатор имеет обмотку среднего напряжения (СН).

Обмоткам трансформатора придают преимущественно цилиндрическую форму, выполняя их при малых токах из круглого медного изолированного провода, а при больших токах - из медных шин прямоугольного сечения или прямоугольного изолированного провода. Ближе к магнитопроводу располагают обмотку низшего напряжения, так как ее легче изолировать от него, чем обмотку высшего напряжения.

Обмотку низшего напряжения изолируют от стержня прослойкой из какого-либо изолировочного материала. Такую же изолирующую прокладку помещают между обмотками высшего и низшего напряжения.

При цилиндрических обмотках поперечному сечению стержня магнитопровода желательно придать круглую форму, чтобы в площади, охватываемой обмотками, не оставалось немагнитных промежутков. Чем меньше немагнитные промежутки, тем меньше длина витков обмоток, а следовательно, и масса меди при заданной площади сечения стального стержня.

Однако стержни круглого сечения изготовлять сложно. Магнитопровод набирают из тонких стальных листов, и для получения стержня круглого сечения понадобилось бы большое число стальных листов различной ширины, а это потребовало бы изготовления множества штампов. Поэтому в трансформаторах большой мощности стержень имеет ступенчатое поперечное сечение с числом ступеней не более 15—17. Количество ступеней сечения стержня определяется числом углов в одной четверти круга. Ярмо магнитопровода, т. е. та его часть, которая соединяет стержни, имеет также ступенчатое сечение.

Для лучшего охлаждения в магнитопроводах, а также в обмотках мощных трансформаторов устраивают вентиляционные каналы в плоскостях, параллельных и перпендикулярных плоскости стальных листов.

В трансформаторах малой мощности площадь сечения провода мала и выполнение обмоток упрощается. Магнитопроводы таких трансформаторов имеют прямоугольное сечение.

Билет 11