Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТОЗОС.docx
Скачиваний:
47
Добавлен:
25.09.2019
Размер:
295.24 Кб
Скачать

2. Коагуляция. Общая характеристика метода.Преимущества, область применения.

Коагуляция  это слипание частиц коллоидной системы при столкновениях в процессе теплового движения, перемешивания или направленного перемешивания во внешнем силовом поле. В результате коагуляции образуются агрегаты - более крупные (вторичные) частицы, состоящие из скопления мелких (первичных) частиц. Первичные частицы в таких агрегатах соединены силами межмолекулярного взаимодействия непосредственно или через прослойку окружающей (дисперсной) среды. Коагуляция сопровождается прогрессирующим укрупнением частиц и снижением их общего числа в объеме дисперсной среды. Слипание однородных частиц называется гомокоагуляцией, а разнородных гетерокоагуяцией.

Эффективность коагуляционной очистки зависит от многих факторов:вида коллоидных частиц; концентрации и степени дисперсности коллоидных частиц; наличия в сточных водах электролитов и других примесей; величины электрокинетического потенциала.

В сточных водах могут содержаться твердые (глина, волокна, цемент, кристаллы солей и т.п.) и жидкие (нефть и нефтепродукты, смолы и другие) загрязнения. Коллоидные частицы, представляющие собой совокупность большого числа молекул вещества, содержащегося в сточной воде в диспергированном состоянии, при перемешивании прочно удерживают покрывающий их слой воды. Обладая большой удельной площадью поверхности, коллоидные частицы адсорбируют находящиеся в воде ионы преимущественно одного знака, которые значительно снижают свободную поверхностную энергию коллоидной частицы. Ионы, непосредственно прилегающие к ядру, образуют слой поверхностно-ядерных ионов, или так называемый адсорбционный слой. В этом слое может находиться также небольшое количество противоположно заряженных ионов, суммарный заряд которых, однако, не компенсирует заряда поверхностно-ядерных ионов. В связи с тем, что на границе адсорбционного слоя создается электрический заряд, вокруг гранулы (ядра с адсорбционным слоем) образуется диффузионный слой, в котором находятся остальные противоположно заряженные ионы, компенсирующие заряд гранул. Гранула вместе с диффузионным слоем называется мицеллой.

Потенциал на границе ядра - термодинамический потенциал (-потенциал) равен сумме зарядов всех поверхностно-ядерных ионов. На границе адсорбционного слоя -потенциал уменьшается на величину, равную сумме зарядов, находящихся в адсорбционном слое противоположно заряженных ионов. Потенциал на границе адсорбционного слоя называется электрокинетическим потенциалом (-потенциал).

На частицы коллоидов действуют диффузионные силы и частицы стремятся равномерно распределиться во всем объеме жидкой фазы. Наличие у частиц электрических зарядов одного знака вызывает у них взаимное отталкивание. Одновременно между коллоидными частицами действуют межмолекулярные силы взаимного притяжения, которые проявляются лишь при небольших расстояниях между частицами. Чтобы вызвать коагуляцию коллоидных частиц, необходимо снизить величину их -потенциала до критического значения добавлением ионов, имеющих положительный заряд. Таким образом, при коагуляции происходит дестабилизация коллоидных частиц вследствие нейтрализации их электрического заряда. При снижении электрического заряда частиц, т.е. при снижении -потенциала, силы отталкивания уменьшаются, и становится возможным слипание частиц – процесс коагуляции коллоида. Для начала коагуляции частицы должны приблизиться друг к другу на расстояние, при котором между ними действуют силы притяжения и химического сродства. Сближение частиц происходит в результате броуновского движения, а также при ламинарном или турбулентном движении потока воды.

Коагулирующее действие есть результат гидролиза, который происходит вслед за растворением. Силы взаимного притяжения между коллоидными частицами начинают преобладать над электрическими силами отталкивания при -потенциале системы менее 0,03 В. При  = 0 В, коагуляция происходит с максимальной интенсивностью, состояние коллоидной системы в этом случае называется изоэлектрическим, а величина pH называется изоэлектрической точкой системы.

Одним из методов снижения -потенциала коллоидной системы является увеличение концентрации электролитов в сточной воде.

Область применения, преимущества и недостатки

Методы коагуляции и флокуляции широко распространены для очистки сточных вод предприятий химической, нефтехимической, нефтеперерабатывающей, целлюлозно-бумажной, легкой, текстильной и других отраслей промышленности.

Производственные сточные воды в большинстве случаев представляют собой слабоконцентрированные эмульсии или суспензии, содержащие коллоидные частицы размером 0,003  0,1 мкм, мелкодисперсные частицы 0,1  10 мкм, а также частицы размером 10 мкм и более. В процессе механической очистки сточных вод достаточно хорошо удаляются частицы размером 10 мкм и более, мелкодисперсные и коллоидные частицы практически не удаляются. Таким образом, сточные воды многих производств после сооружений механической очистки представляют собой агрегативно устойчивую систему. Для их очистки применяются методы коагуляции: агрегативно устойчивая система при этом нарушается, образуются более крупные агрегаты частиц, которые удаляются из сточных вод механическими методами.

Недостатки метода коагуляционной очистки сточных вод (значительный объем коагулянтов, большой объем получающегося осадка, сложность его обработки и складирования, увеличение степени минерализации обрабатываемой сточной воды) не позволяют рекомендовать коагуляцию как самостоятельный метод очистки.

Коагуляционный метод очистки сточных вод применяется в основном при небольших расходах воды и при наличии дешевых коагулянтов.