Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Метод пособие по КСЕ 2011.doc
Скачиваний:
16
Добавлен:
25.09.2019
Размер:
682.5 Кб
Скачать

Семинарское занятие

Цели занятия:

  1. Сформировать представление о системном методе.

  2. Определить основные принципы кибернетики.

  3. Сформировать представление о самоорганизующихся системах, синергетике.

  4. Определить связь кибернетики и синергетики с современными отраслями науки.

Вопросы выносимые на обсуждение:

  1. Определить предмет и объект кибернетики.

  2. Привести классификацию кибернетических систем.

  3. Приведите примеры самоорганизующихся систем.

  4. Какова связь кибернетики с процессом самоорганизации.

  5. Синергетика как новое направление междисциплинарных исследований.

  6. Связь синергетики с другими отраслями науки.

План семинарского занятия:

  1. Кибернетика и информационное общество.

  2. Открытые неравновесные системы и самоорганизация.

  3. Связь синергетики с науками о природе и обществе.

Литература:

  1. Пригожин И. Время, хаос, квант. – М.: Прогресс, 1994

  2. Рузавин Г.И Современное естествознание / Г.И. Рузавин. – М.: ЮНИТИ,1999. – 288 с.

  3. Сашин Д.К. 100 великих научных открытий / Д.К. Сашин. – М.: Вече, 2002. – 474 с.

  4. Хакен Г. Информация и самоорганизация. – М.: Мир, 1991.

  5. Шустер Г. Детерминированный хаос. – М.: Мир, 1988.

Тема 2.4. Современная естественнонаучная картина мира. Физические, химические и биологические концепции.

Современная физическая картина мира

Важнейшее свойство материи — ее структурная и системная организация, которая выражает упорядоченность существования материи в виде огромного разнообразия материальных объектов различных масштабов и уровней, связанных между собой единой системой иерархии. В современном естествознании множество материальных систем принято условно делить на микромир, макромир и мегамир. 1. К микромиру относятся молекулы, атомы и элементарные частицы.  2. Материальные объекты, состоящие из огромного числа атомов и молекул, образуют макромир. 3. Самую крупную систему материальных объектов составляет мегамир—мир планет, звезд, галактик и Вселенной. Материальные системы микро-, макро- и мега мира различаются между собой размерами, характером доминирующих процессов и законами, которым они подчиняются. Важнейшая концепция современного естествознания заключается в материальном единстве всех систем микро-, макро- и мега мира. Можно говорить о единой материальной основе происхождения всех материальных систем на разных стадиях эволюции Вселенной.

Огромное разнообразие природных систем и структур, их особенности и динамизм обусловливаются взаимодействием материальных объектов, т.е. их взаимным действием друг на друга. Именно взаимодействие—основная причина движения материи, поэтому взаимодействие, как и движение, универсально, т.е. присуще всем материальным объектам вне зависимости от их природы происхождения и системной организации. Особенности различных взаимодействий определяют условия существования и специфику свойств материальных объектов. Взаимодействующие объекты обмениваются энергией и импульсом — основными характеристиками их движения. Наблюдаемые в природе взаимодействия материальных объектов и систем весьма разнообразны.

Основанием для такой единой картины мира послужил всеобъемлющий характер открытых Ньютоном законов движения тел. Этим законам с удивительной точностью подчиняются как громадные небесные тела, так и мельчайшие песчинки, гонимые ветром. Революционное изменение классических представлений о физической картине мира произошло после открытия квантовых свойств материи. С появлением квантовой физики, описывающей движение микрочастиц, начали вырисовываться новые элементы единой физической картины мира.

Физика—основа естественных наук. Всю историю развития физики можно условно разделить на три основных этапа: доклассической физики; классической физики; постклассической физики.

Первый этап развития физики—этап доклассической физики—иногда называют донаучным - естествознание медленно произрастало из натурфилософии—философии природы, представляющей собой умозрительное истолкование природных явлений и процессов.. Этот этап—самый длительный: он охватывает период от времени Аристотеля (IVв. до н. э.) до конца XVIв. Этап доклассической физики открывает геоцентрическая система мировых сфер Аристотеля. Почти полторы тысячи лет отделяет завершенную геоцентрическую систему от достаточно совершенной гелиоцентрической системы польского математика и астронома Николая Коперника. В центре гелиоцентрической системы находится не Земля, а Солнце. Вершина гелиоцентрической системы—законы движения планет, открытые немецким астрономом Иоганом Кеплером. Астрономические открытия Галилео Галилея, его физические эксперименты и фундаментальные законы механики.

Начало второго этапа—этапа классической физики—связывают с работами итальянского ученого Галилео Галилея, одного из основателей точного естествознания, и трудами английского математика, механика, астронома и физика Исаака Ньютона, основоположника классической физики. Второй этап длился около трех веков до конца XIX в. Этап классической физики характеризуется крупными достижениями не только в классической механике, но и в других отраслях: термодинамике, молекулярной физике, оптике, электричестве, магнетизме и т. п. Назовем важнейшие из них: установлены опытные газовые законы; предложено уравнение кинетической теории газов; сформулирован принцип равномерного распределения энергии по степеням свободы, первое и второе начала термодинамики; открыты законы Кулона, Ома и электромагнитной индукции; разработана электромагнитная теория;  явления интерференции, дифракции и поляризации света получили волновое истолкование; сформулированы законы поглощения и рассеивания света. К началу XX в. получены экспериментальные результаты, труднообъяснимые в рамках классических знаний. Поэтому был предложен совершенно новый подход—квантовый, основанный на дискретной концепции. Квантовую гипотезу впервые ввел в 1900 г. немецкий физик Макс Планк, вошедший в историю развития физики как один из основоположников квантовой теории.

С введением квантовой концепции начинается третий этап развития физики—этап современной физики, включающий не только квантовые, но и классические представления. Характерная особенность этапа постклассической физики (первая половина 20 в.) заключается в том, что наряду с классическими развиваются квантовые представления, физика исследует микромир. На основании квантовой механики объясняются многие микропроцессы, происходящие в пределах атома, ядра и элементарных частиц—появились новые отрасли современной физики: квантовая электродинамика, квантовая теория твердого тела, квантовая оптика и многие другие. В первые десятилетия XX в. исследовалась радиоактивность и выдвигались идеи о строении атомного ядра. В 1938г. сделано важное открытие: немецкие радиохимики О. Ган и Ф. Штрассман обнаружили деление ядер урана при облучении их нейтронами. Это открытие способствовало бурному развитию ядерной физики, созданию ядерного оружия и рождению атомной энергетики. Одно из крупнейших достижений физики XX в.—это, безусловно, создание в 1947г. транзистора выдающимися американскими физиками Д. Бардиным, У. Браттейном и У. Шокли. С развитием физики полупроводников и созданием транзистора зарождалась новая технология—полупроводниковая, а вместе с ней и перспективная, бурно развивающаяся отрасль естествознания—микроэлектроника. Со второй половины XXв. можно рассматривать постнеклассический период развития физики, когда на основе полученных знаний формируется новая наука - синергетика- природные явления рассматриваются как сложные системы.

СТАНОВЛЕНИЕ И РАЗВИТИЕ ХИМИЧЕСКОЙ КАРТИНЫ МИРА

 

ВОЗНИКНОВЕНИЕ ХИМИИ

 

Процесс зарождения и формирования химии как науки был длительным во времени, сложным и противоречивым по содержанию. Истоки химических знаний лежат в глубокой древности. В их основе лежит потребность человека получить необходимые вещества для своей жизнедеятельности. Для этого нужно было научиться производить из одних веществ другие, с заданными свойствами, то есть осуществлять их качественные превращения.

Происхождение названия «химия» не выяснено до сих пор, хотя по этому вопросу существует несколько версий. Согласно одной из них, это название произошло от египетского слова «хеми», что означало Египет, а также «черный». Историки науки переводят этот термин также как «египетское искусство». Таким образом, в этой версии слово химия означает искусство производить необходимые вещества, в том числе и искусство превращать обыкновенные металлы в золото и серебро или их сплавы.

Однако в настоящее время более популярно другое объяснение. Группа ученых полагают, что слово «химия» произошло от греческого термина «химос», который можно перевести как «сок растений». Поэтому «химия» означает «искусство получения соков», но сок, о котором идет речь, может быть и расплавленным металлом. Так что химия может означать и «искусство металлургии».

История химии показывает, что ее развитие происходило неравномерно: периоды накопления и систематизации данных эмпирических опытов и наблюдений сменялись периодами открытия и бурного обсуждения фундаментальных законов и теорий. Последовательное чередование таких периодов позволяет разделить историю химической науки на несколько этапов:

1. Период алхимии - с древности до XVI в. нашей эры. Он характеризуется поисками философского камня, эликсира долголетия, алкагеста (универсального растворителя). Кроме того, в алхимический период почти во всех культурах практиковалось «превращение» неблагородных металлов в золото или серебро, но все эти «превращения» у каждого народа осуществлялись самыми разными способами.

2. Период зарождения научной химии, который продолжался в течение XVI - XVIII веков. На этом этапе были созданы теории Парацельса, теории газов Бойля, Кавендиша и др., теория флогистона Г. Шталя и, наконец, теория химических элементов Лавуазье. В течение этого периода совершенствовалась прикладная химия, связанная с развитием металлургии, производства стекла и фарфора, искусства перегонки жидкостей и т.д. К концу XVIII века произошло упрочение химии как науки, независимой от других естественных наук.

3. Период открытия основных законов химии охватывает первые шестьдесят лет XIX века и характеризуется возникновением

и развитием атомной теории Дальтона, атомно-молекулярной теории Авогадро, установлением Берцелиусом атомных весов элементов и формированием основных понятий химии: атом, молекула и др.

4. Современный период длится с 60-х годов XIX века до наших дней. Это наиболее плодотворный период развития химии, так как в течение немногим более 100 лет были разработаны периодическая классификация элементов, теория валентности, теория ароматических соединений и стереохимия, теория электролитической диссоциации Аррениуса, электронная теория материи и т.д.

Вместе с тем в этот период значительно расширился диапазон химических исследований. Такие составные части химии, как неорганическая химия, органическая химия, физическая химия, фармацевтическая химия, химия пищевых продуктов, агрохимия, геохимия, биохимия и т.д. приобрели статус самостоятельных наук и собственную теоретическую базу.

ХИМИЯ КАК НАУКА

Одной из целей нашего экскурса в историю химии было показать ее специфику как науки. Еще Д.И. Менделеев обратил внимание на то, что химия, в отличие от многих других наук (например, биологии), сама создает свой предмет исследования. Как никакая другая наука, она является одновременно и наукой, и производством. Химия всегда была нужна человечеству в основном для того, чтобы получать из веществ природы по возможности все необходимые металлы и керамику, известь и цемент, стекло и бетон, красители и фармацевтические препараты, взрывчатые вещества и горюче-смазочные материалы, каучук и пластмассы, химические волокна и материалы с заданными электрофизическими свойствами. Поэтому все химические знания», приобретенные за многие столетия и представленные в виде теорий, законов, методов, технологий, объединяет одна-единственная непреходящая, главная задача химии. Это задача получения веществ с необходимыми свойствами. Но это - производственная задача, и, чтобы ее реализовать, надо уметь из одних веществ производить другие, то есть осуществлять качественные превращения вещества. А поскольку качество - это совокупность свойств вещества, надо знать, от чего зависят свойства. Иначе говоря, чтобы решить названную производственную задачу, химия должна решить теоретическую задачу генезиса (происхождения) свойств вещества.

Таким образом, основанием1 химии выступает двуединая проблема - получения веществ с заданными свойствами (на достижение чего направлена производственная деятельность человека) и выявления способов управления свойствами вещества (на реализацию чего направлена научно-исследовательская деятельность).

Это и есть основная проблема химии. Она же является системообразующим началом данной науки. Эта проблема возникла в древности и не теряет своего значения в наши дни. Естественно, что в разные исторические эпохи она решалась по-разному, так как способы ее решения зависят от уровня материальной и духовной культуры общества, а также от внутренних закономерностей, присущих ходу научного познания. Достаточно сказать, что изготовление таких материалов, как, например, стекло и керамика, краски и душистые вещества, в древности осуществлялось совершенно иначе, чем в XVIII веке и позже.

Вся история химии, все ее развитие является закономерным процессом смены способов решения ее основной проблемы.

Важнейшей особенностью основной проблемы химии является то, что она имеет всего четыре способа решения. Речь идет при этом не о частных методах изучения и превращения вещества - их множество, а о самых общих способах решения вопроса: от чего, от каких факторов зависят свойства вещества. А они зависят от четырех факторов:

1. От его элементного и молекулярного состава.

2. От структуры его молекул.

3. От термодинамических и кинетических (наличие катализаторов, воздействие материала стенок сосудов и т.д.) условий, в которых вещество находится в процессе химической реакции.

4. От высоты химической организации вещества.

Первый по-настоящему действенный способ решения проблемы происхождения свойств вещества появился во второй половине XVII века в работах английского ученого Роберта Бойля. Его исследования показали, что качества и свойства тела не имеют абсолютного характера и зависят от того, из каких химических элементов эти тела составлены. С этого момента стали считать, что наименьшей частицей простого тела является молекула. В период с середины XVII века до первой половины XIX века учение о составе вещества представляло собой всю тогдашнюю химию. Оно существует и сегодня, представляя собой часть химии.

Монопольное положение учения о составе вещества сохранялось до 1830-х годов. К этому времени мануфактурное производство сменилось фабричным, опирающимся на машинную технику и широкую сырьевую базу. В химическом производстве стала преобладать переработка огромных масс вещества растительного и животного происхождения, их качественное разнообразие потрясающе велико - сотни тысяч химических соединений, а состав их крайне однообразен - лишь несколько элементов-органогенов (углерод, водород, кислород, сера, азот, фосфор), из которых эти соединения состоят. Объяснение 'необычайно широкому разнообразию органических соединений при столь бедном их элементном составе было найдено в явлениях, получивших названия «изомерия» и «полимерия». Стало совершенно ясно, что свойства веществ, а следовательно, и их качественное разнообразие обусловливаются не только составом, но еще и структурой молекул. Появилось новое решение проблемы генезиса свойств, а также отграничились сами понятия «свойство» и «функция» или реакционная способность. В понятие «реакционная способность» включались представления о химической активности отдельных фрагментов молекулы - атомов, атомных групп и даже отдельных химических связей.

Так было положено начало второму уровню развития химических знаний, который получил название структурной химии. Она стала более высоким уровнем по отношению к учению о составе, включая его в себя.

На втором уровне своего развития химия превратилась из науки преимущественно аналитической в науку главным образом синтетическую. Этот период связан с развитием химии органического синтеза. В это время появились всевозможные азокрасители для текстильной промышленности, различные препараты для фармации, искусственный шелк и т.д. Для этого все материалы добывались в ограниченных масштабах и с огромными затратами низкопроизводительного, преимущественно сельскохозяйственного труда.

Но изумление успехами структурной химии было недолгим. Интенсивное развитие автомобилестроения, авиации, энергетики, приборостроения в первой половине XX века выдвинуло новые требования к производству материалов. Необходимо было получать высокооктановое моторное топливо, специальные синтетические каучуки, пластмассы, высокостойкие изоляторы, жаропрочные органические и неорганические полимеры, полупроводники. Для получения этих материалов способ решения основной проблемы химии, основанный на учении о составе и структурных теориях, был явно недостаточен. Он не учитывал резкие изменения свойств вещества в результате влияния температуры, давления, растворителей и многих других факторов, воздействующих на направление и скорость химических процессов.

Под влиянием новых требований производства возник третий способ решения проблемы генезиса свойств, учитывающий всю сложность организации химических процессов в реакторах и обеспечивающий их экономически приемлемую производительность. После этого химия становится наукой уже не только и не столько о веществах как законченных предметах, но наукой о процессах и механизмах изменения вещества. Благодаря этому она обеспечила многотоннажное производство синтетических материалов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов. Производство искусственных волокон, каучуков, этилового спирта и многих растворителей стало базироваться на нефтяном сырье, а производство азотных удобрений - на основе азота воздуха. Появилась технология нефтехимических производств с ее поточными системами, обеспечивающими непрерывные высокопроизводительные процессы.

Так, еще в 1935 году все 100 процентов таких материалов, как кожа, меха, резина, волокна, моющие средства, олифа, лаки, уксусная кислота, этиловый спирт, производились всецело из животного и растительного сырья, в том числе из пищевого. На это расходовались десятки миллионов тонн зерна, картофеля, жиров, сырой кожи и т.д. А уже в 1960-е годы 100% технического спирта, 80% моющих средств, 90% олифы и лаков, 40% волокон, 70% каучука и около 25% кожевенных материалов изготовлялись на основе газового и нефтяного сырья. Помимо этого, химия дает ежегодно сотни тысяч тонн мочевины и нефтяного белка в качестве корма скоту и около 200 миллионов тонн удобрений.

Но и эти возможности еще далеко не предел. В 60 - 70-е годы появился четвертый способ решения основной проблемы химии, открывающий пути использования в производстве материалов самые высокоорганизованные химические системы, какие только возможны в настоящее время. В основе этого способа лежит принцип использования в процессах получения целевых продуктов таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, то есть к самоорганизации химических систем. В сущности, речь идет об использовании химического опыта живой природы. Это - своеобразная биологизация химии. Химический реактор предстает как некое подобие живой системы, для которой характерны саморазвитие и определенные черты поведения. Так, мы с вами видим четыре уровня развития химических знаний, или, как принято говорить, четыре концептуальные системы, находящиеся в отношениях иерархии.

На основе системы химических наук складывается химическая картина мира - взгляд на природу с точки зрения химии, определяющий при этом место и роль химических объектов и процессов во всем реальном природном многообразии. Ее содержанием является:

1. Обобщенное знание данной эпохи о том, что представляют собой объекты живой и неживой природы со стороны их химического содержания. Сюда входит учение о многообразии частиц вещества, о его химической организации.

2. Представление о происхождении всех основных типов природных объектов, их естественной эволюции.

3. Зависимость химических свойств природных объектов от их структуры.

4. Общие закономерности природных процессов как процессов химического движения (взаимодействие реагирующих веществ друг с другом и с окружающей средой).

5. Знание о специфических объектах, синтезируемых в практической деятельности химика.

 

ОСОБЕННОСТИ БИОЛОГИЧЕСКОГО УРОВНЯ ОРГАНИЗАЦИИ МАТЕРИИ

История идеи развития в биологии делится на 5 основных этапов:

  1. Период от античной натурфилософии до первых биологических дисциплин.

  1. Систематизация накопленного в ботанике и зоологии материала.

  2. Опубликование Дарвином труда «Происхождение видов» в 1859 г. Если XVIII в. с полным основанием можно назвать веком Ньютона, когда возник научный метод, которому сегодня мы обязаны всеми достижениями современной науки, то век XIX, надо согласиться в этом с Больцманом, следует назвать веком Дарвина. Создание эволюционной теории тоже было революцией. В биологию пришли идеи движения и развития. Это период революционного перелома в биологии, связанный с возникновением целых отраслей эволюционной биологии.

  1. Переход к систематическому экспериментальному изучению отдельных факторов эволюции, формированию новых направлений в генетике и экологии. Этот период длился с начала XX в. до середины 30-х гт. XX в.

  2. Период всеобъемлющего синтеза знаний о факторах, движущих силах и закономерностях в эволюции. Этот период берет свое начало в 40-х гт. и продолжается до настоящего времени.

КОНЦЕПЦИИ ПРОИСХОЖДЕНИЯ ЖИВОГО

Еще в глубокой древности люди задавали себе вопросы: откуда произошла живая природа? Как появилась жизнь? Где та грань, через которую природа перешагнула при переходе от неживого к живому? Почему живые системы для своего построения выбрали молекулы лишь с определенной пространственной организацией

Проблема происхождения живого решалась довольно просто, пока ученые находились в счастливом неведении относительно сущности живого, как, впрочем, и того, что представляла собой Земля в младенчестве.

Идея самопроизвольного происхождения жизни

Первая идея, которая была выдвинута, — это идея самопроизвольного зарождения жизни. Эмпедокл, например, считал, что все дышащее обязано своим существованием самозарождению отдельных органов — рук, ног, лап, голов, сердец, которые затем, случайно комбинируясь, складывались в тела и достигали в конце концов вполне удачных комбинаций.

Лет за сто до него Анаксимандр с поразительной для своего времени прозорливостью утверждал, что путь к высшим организмам природа начинала с более примитивных, и, пожалуй, впервые выдвинул идею эволюции природы. Но и он за исходную субстанцию брал сложный природный продукт — морской ил. По его мнению, живые существа зародились во влажном иле, который когда-то покрывал землю. Когда Земля стала высыхать, влага скапливалась в углублениях, в результате чего образовывались моря, а некоторые животные вышли на сушу. Среди них были разнообразные существа, в чреве которых развивались люди. Когда люди выросли, покрывавшая их чешуйчатая оболочка развалилась.

Эта идея самопроизвольного зарождения организмов, видимо, представлялась многим поколениям наших далеких предков очень убедительной, так как просуществовала, не меняясь, долгие века. Самопроизвольное зарождение лягушек, мышей, саламандр, ягнят и т.п. из различных материальных образований, в том числе гниющей земли, отбросов и иных объектов, рассматривалось многими выдающимися умами и мыслителями: Аристотелем, Коперником, Декартом, Галилеем, и именно благодаря этому идея имела столь широкое распространение и просуществовала так долго.

Опыты Пастера, доказывающие происхождение живого от живого

В XVII в. опыты Реди показали, что без мух черви в гниющем мясе не обнаружатся, а если прокипятить органические растворы, то микроорганизмы в них не смогут зарождаться (суждение, известное сейчас любой хозяйке, занимающейся консервированием продуктов). И только в 60-х гг. XIX в. Пастер (1822—1895) в своих опытах продемонстрировал, что микроорганизмы появляются в органических растворах только потому, что туда раньше был внесен зародыш. Пастером фактически была открыта природа брожения. Он ввел методы асептики и антисептики, а в 1888 г. создал и возглавил институт микробиологии (впоследствии Пастеровский институт).

Термин пастеризация произошел от фамилии этого ученого. Пастеризация означает способ уничтожения микробов в жидкостях и пищевых продуктах однократным нагреванием до температуры ниже 100 °С (обычно 60— 70 °С) с различной выдержкой (чаще всего 15—30 минут). Способ этот был предложен Л. Пастером и применяется для консервирования молока, вина, пива.

Являясь основоположником современной микробиологии и иммунологии, Л.Пастер известен также своими работами по асимметрии молекул, которые легли в основу стереохимии — области науки, изучающей пространственное строение молекул и влияние его на физические свойства, а также на направление и скорость реакций. Молекулярная асимметрия, открытая Л. Пастером (см. ТЕМУ 9.1.2.1—9.1.2.3), явилась одним из доказательств земного происхождения жизни и имела огромное значение для понимания особенностей мирового эволюционного процесса.

Таким образом, опыты Пастера имели двоякое значение:

  1. Доказали несостоятельность концепции самопроизвольного зарождения жизни.

  2. Обосновали идею о том, что все современное живое происходит только от живого.

Гипотеза занесения живых существ на Землю из космоса

Примерно в тот же период, когда Пастер продемонстрировал свои опыты, немецкий ученый Г. Рихтер (1865 г.) разработал гипотезу занесения живых существ на Землю из космоса. Зародыши могли попасть на Землю вместе с метеоритами и космической пылью и положить начало эволюции живого, которая породила все многообразие земной жизни. Эта концепция называлась концепцией панспермии. Ее разделяли такие ученые, как Г. Гельмгольц, У. Томсон, что способствовало ее широкому распространению среди ученых. Но она не получила научного доказательства, так как примитивные организмы или зародыши должны были погибнуть под действием ультрафиолетовых и космических лучей.

Гипотеза Опарина

В 1924 г. вышла книга «Происхождение жизни» советского ученого А. И. Опарина, где он теоретически и экспериментально доказал, что органические вещества могут образовываться абиогенным путем при действии электрических зарядов, тепловой энергии, ультрафиолетовых лучей на газовые смеси, содержащие пары воды, аммиака, метана и др. Под влиянием различных факторов природы эволюция углеводородов привела к образованию аминокислот, нуклеотидов и их полимеров, которые по мере увеличения концентрации органических веществ в первичном бульоне гидросферы способствовали образованию коллоидных систем, которые, выделяясь из окружающей среды и имея неодинаковую внутреннюю структуру, по-разному реагировали на внешнюю среду. Превращению углеродистых соединений в химический период эволюции способствовала атмосфера с ее восстановительными свойствами, которая потом стала приобретать окислительные свойства, что свойственно атмосфере и в настоящее время.

Современные концепции происхождения жизни

Сегодня проблема происхождения жизни исследуется широким фронтом различных наук. В зависимости от того, какое наиболее фундаментальное свойство живого исследуется и преобладает в данном изучении (вещество, информация, энергия), все современные концепции происхождения жизни можно условно разделить:

  1. Концепция субстратного происхождения жизни (ее придерживаются биохимики во главе с А. Опариным).

  2. Концепция энергетического происхождения (И. Пригожин, А. Волькенштейн).

  3. Концепция информационного происхождения (ее развивали А.Н. Колмогоров; А.А. Ляпунов, Д.С. Чернавский и др.).

Из конкретных концепций, получивших сегодня признание, кроме гипотезы Опарина о путях эволюции обмена веществ можно выделить концепцию о передаче наследственной информации английского ученого Д. Холдейна (1892—1964), имевшего труды по генетике, биохимии, применению математических методов в биологии.

Все концепции ставят целью определить тот низший порог, с которого начинает действовать естественный отбор на биологическом уровне, а значит, начинают функционировать биологические законы. Однако ниже этой границы действуют другие законы — закономерности эволюционной химии, т.е. совсем иная форма естественного отбора.

В 1969 г. А. П. Руденко предложил химический аспект происхождения жизни. Используя положение Ч. Дарвина о естественном отборе и принцип усложнения и прогрессивной направленности эволюции, он заложил теоретическую базу эволюционной химии.

Современные биологи доказывают, что универсальной формулы жизни (т.е. такой, которая исчерпывающе отображала бы ее сущность) нет и не может быть. Такое понимание предполагает исторический подход к биологическому познанию как постижению сущности жизни, в ходе чего менялись и сами концепции происхождения жизни и представления о тех формах, в которых такое познание возможно.