Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.doc
Скачиваний:
77
Добавлен:
26.09.2019
Размер:
3.31 Mб
Скачать

«Инструментальные стали»

В связи с различными условиями работы инструмента инструментальные стали по назначению делят на следующие группы: стали для режущих инструментов, измерительных инструментов, штамповые стали.

«Стали и сплавы с особыми свойствами»

1) Жаростойкие и жаропрочные стали и сплавы. При высокой температуре в условиях эксплуатации в среде нагретого воздуха в продуктах сгорания топлива происходит окисление стали (газовая коррозия). На поверхности сначала образуется тонкая пленка окислов, которая с течением времени увеличивается, и образуется окалина. Способность стали сопротивляться окислению при высоких температурах называется жаростойкостью (окалиностойкостью). Если окисная пленка пористая, окисление происходит интенсивно; если плотная, окисление замедляется или даже прекращается. Для получения плотной пленки сталь легируют хромом, кремнием и алюминием.

К жаропрочным относят стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течении определенного времени и обладающие при этом достаточной жаростойкостью (детали котлов и турбин)

2) Коррозийно-стойкие (нержавеющие) стали.

3) Магнитные стали и сплавы. Делятся на магнитно – мягкие и магнитно – твердые. Магнитно – мягкие стали (электротехническое железо и сталь, железоникелевые сплавы) применяют для сердечников, полюсных наконечников электромагнитов. Магнотно – твердые стали (высокоуглероистые и легированные стали) применяют для изготовления постоянных магнитов.

Тема 1. 3 Основы термической и химико – термической обработки металлов

Термической обработкой называют процессы теплового воздей­ствия по определенным режимам с целью изменения структуры и свойств сплава. От термической обработки зависит качество и стой­кость в работе деталей и инструмента.

Основоположником теории и рациональных методов термической обработки стали является русский ученый Д. К. Чернов.

Теория термической обработки стали основана на общей теории фазовых превращений, протекающих в сплавах в твердом состоянии. Знание теории фазовых и структурных превращений, протекающих при нагреве и охлаждении стали с различной скоростью, позволяет управлять процессами термической обработки и получать сталь с необходимыми структурой и свойствами.

«Превращения в стали при нагреве»

Превращение перлита в аустенит. В исходном состоянии сталь представляет собой смесь фаз феррита и цементита. Затем начинается образо­вание мелких зерен аустенита (рис. 11, а), в которых растворяется цементит. Затем образовавшиеся зерна растут, зарождаются новые мелкие зерна аустенита (рис. 11, б, в) и продолжается растворение цементита. Процесс заканчивается заполнением объема бывшего пер­литного зерна зернами аустенита (рис. 11, г).

Рисунок 11 Схема образования аустенитных зерен

Превращение перлита в аустенит — процесс кристаллизацион­ного типа и носит диффузионный характер, так как сопровождается перемещением атомов углерода на расстояния больше межатомных.

Рост зерна аустенита при нагреве. Образующиеся при нагреве из зерен перлита зерна аустенита получаются мел­кими и называются начальными зернами аустенита. При повышении температуры происходит рост зерен и тем в большей степени, чем выше температура нагрева. Но склон­ность к росту зерен с повышением температуры у сталей различная. Стали, раскисленные в процессе выплавки кремнием и марганцем, обладают склонностью к непрерыв­ному росту зерна с повышением температуры. Такие стали назы­вают наследственно крупнозерни­стыми (рис. 12). Стали, раскислен­ные в процессе выплавки дополни­тельно алюминием, не обнаружи­вают роста зерна при нагреве до значительно более высоких темпе­ратур (900—950 °С). Такие стали называют наследственно мелкозер­нистыми (рис. 12). Благоприятное влияние алюминия объясняется образованием ни­трида алюминия A1N, который в виде мелких включений располага­ется по границам зерен и тормозит их рост. При определенной темпе­ратуре происходит растворение включений в аустените, и зерна начи­нают расти очень быстро. Наследственную зернистость оценивают баллами по специальной шкале зернистости.

Рисунок 12 Схема роста зерна аустенита в наследственно мелкозернистой (а) и крупнозернистой (б) сталях.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]