Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Приора.docx
Скачиваний:
8
Добавлен:
26.09.2019
Размер:
4.26 Mб
Скачать

4 Системы управления шасси автомобиля

4.1 Тормозная система автомобиля

а) Назначение.

Замедление автомобиля вплоть до полной его остановки, удержание автомобиля на месте во время стоянки.

б) Требования, предъявляемые к тормозному управлению.

Требования к тормозному управлению:

  • минимальный тормозной путь или мак­симальное установившееся замедление е соответствии с требованиями ГОСТ Р 41.13-99 для пассажир-ских автомобилей кате­горий M1, М2, М3 и грузовых автомобилей категорий N1, N2, N3 в зависимости от типа испытаний (ноль; I; II);

  • сохранение устойчивости при торможе­нии (критериями устойчи-вости служат линейное отклонение, угловое отклонение угол складывания автопоезда);

  • стабильность тормозных свойств при неоднократных торможениях;

  • минимальное время срабатывания тор­мозного привода;

  • силовое следящее действие тормозного привода, т. е. пропорциональность между усилием на педали и приводным момен­том;

  • малая работа управления тормозными системами — усилие на тормозной педали в зависимости от назначения автотранс­портного средства должно лежать в пре­делах 500...700 Н (низший предел для легковых автомо-билей); ход тормозной педали 80...180 мм;

  • отсутствие органолептических явлений (слуховых, обонятельных);

  • надежность всех элементов тормозных систем; основные элементы (тормозная педаль и ее крепление, главный тормозной цилиндр, тормозной кран и др.) должны иметь гарантированную прочность, не должны выходить из строя на протяже­нии гарантированного ресурса; должна быть также предусмотрена сигнализация, оповещающая водителя о неисправности тормозной системы.

в) Классификация заданной конструкции.

Автомобиль оснащен двухконтурной рабочей тормозной системой с диагональным разделением контуров (рис. 22), что значительно повышает безопасность вождения автомобиля. Один контур гидропривода обеспечивает работу правого переднего и левого заднего тормозных механизмов, другой — левого переднего и правого заднего.

При отказе одного из контуров рабочей тормозной системы используется второй контур, обеспечивающий остановку автомобиля с достаточной эффективностью.

В гидравлический привод включены вакуумный усилитель 7 и двухконтурный регулятор 10 давления задних тормозов.

Стояночная тормозная система имеет привод на тормозные механизмы задних колес.

Рисунок 22 - Схема гидропривода тормозов

1 – тормозной механизм переднего колеса; 2 – гибкий шланг переднего тормоза; 3 – трубопровод контура левый передний – правый задний тормоза; 4 – главный цилиндр гидропривода тормозов; 5 – трубопровод контура правый передний – левый задний тормоза; 6 – бачок главного цилиндра; 7 – вакуумный усилитель; 8 – тормозной механизм заднего колеса; 9 – гибкий шланг заднего тормоза; 10 – регулятор давления; 11 – педаль тормоза.

Вакуумный усилитель (рис. 23) диафрагменного типа работает по принципу перепада давления в вакуумной и атмосферной камерах, вследствие чего при нажатии на педаль тормоза создается дополнительное усилие на поршень главного тормозного цилиндра. Резиновая диафрагма 8 вместе с корпусом 17 клапана делят полость вакуумного усилителя на две камеры: вакуумную А и атмосферную В. Камера А соединена с впускным коллектором двигателя через обратный клапан наконечника и шланг.

Корпус 17 клапана пластмассовый. На выходе из крышки он уплотнен гофрированным защитным чехлом 11. В корпус клапана помещен шток 2 привода главного цилиндра с опорной втулкой, поршень 10, клапан 15 в сборе, возвратные пружины 13 и 14 соответственно толкателя и клапана, толкатель 12. При нажатии на педаль перемещается толкатель 12, поршень 10, а вслед за ними и клапан 15 до упора в седло корпуса клапана. При этом камеры А и В разобщаются. При дальнейшем перемещении поршня его седло отходит от клапана и через образовавшийся зазор камера В соединяется с атмосферой. Воздух, поступивший через зазор между поршнем и клапаном, а также по каналу D, создает давление на диафрагму 8. За счет разности давления в камерах А и В корпус клапана перемещается вместе со штоком 2, который действует на поршень главного цилиндра. При отпущенной педали клапан 15 отходит от седла корпуса и через образовавшийся зазор и канал С камеры А и В сообщаются между собой.

Регулятор давления изменяет давление в гидравлическом приводе тормозных механизмов задних колес в зависимости от нагрузки на заднюю ось автомобиля. Он включен в оба контура тормозной системы, через него тормозная жидкость поступает к обоим задним тормозным механизмам.

Рисунок 23 - Вакуумный усилитель

1 – фланец крепления наконечника; 2 – шток; 3 – возвратная пружина диафрагмы; 4 – уплотнительное кольцо фланца главного цилиндра; 5 – главный цилиндр; 6 – шпилька усилителя; 7 – корпус усилителя; 8 – диафрагма; 9 – крышка корпуса усилителя; 10 – поршень; 11 – защитный чехол корпуса клапана; 12 – толкатель; 13 – возвратная пружина толкателя; 14 – пружина клапана; 15 – клапан; 16 – буфер штока; 17 – корпус клапана; А – вакуумная камера; В – атмосферная камера; С, D – каналы.

Регулятор давления. В регуляторе есть четыре камеры: А и D (рис. 24) соединены с главным цилиндром, В — с левым колесным цилиндром задних тормозов, С — с правым.

В исходном положении педали тормоза поршень 2 поджат рычагом 5 через пластинчатую пружину 7 к толкателю 20 (см. рис. 24), который под действием этого усилия поджимается к седлу 14 клапана 18. Клапан 18 отжимается от седла, в результате образуются зазоры К (между головкой поршня и уплотнителем 21) и Н. Через эти зазоры камеры А и D сообщаются с камерами В и С.

При нажатии на педаль тормоза жидкость через зазоры К и Н и камеры В и С поступает в колесные цилиндры тормозных механизмов. При увеличении давления жидкости возрастает усилие на поршне, стремящееся выдвинуть его из корпуса. Когда усилие от давления жидкости превысит усилие от упругого рычага, поршень начнет выдвигаться из корпуса, а вслед за ним под действием пружин 12 и 17 станет перемещаться толкатель 20 вместе с втулкой 19 и кольцами 10. При этом зазор М увеличивается, а зазоры Н и К уменьшаются. Когда зазор Н будет выбран полностью и клапан 18 изолирует камеру D от камеры С, толкатель 20 вместе с расположенными на нем деталями перестает перемещаться вслед за поршнем. Теперь давление в камере С будет изменяться в зависимости от давления в камере В. При дальнейшем увеличении усилия на педали тормоза давление в камерах D, В и А возрастает, поршень 2 продолжает выдвигаться из корпуса, а втулка 19 вместе с уплотнительными кольцами 10 и тарелкой 11 под усиливающимся давлением в камере В сдвигается в сторону пробки 16. При этом зазор М начнет уменьшаться. За счет уменьшения объема камеры С давление в ней, а значит, и в приводе тормоза нарастает и практически будет равно давлению в камере В. Когда зазор К станет равен нулю, давление в камере В, а значит, и в камере С будет расти в меньшей степени, чем давление в камере А за счет дросселирования жидкости между головкой поршня и уплотнителем 21. Зависимость между значениями давления в камерах В и А определяется отношением разности площадей головки и штока поршня к площади головки.

Рисунок 24 – Регулятор давления

1 – корпус регулятора давления; 2 – поршень; 3 – защитный колпачок; 4, 8 – стопорные кольца; 5 – втулка поршня; 6 – пружина поршня; 7 – втулка корпуса; 9, 22 – опорные шайбы; 10 – уплотнительные кольца толкателя; 11 – опорная тарелка; 12 – пружина втулки толкателя; 13 – кольцо уплотнительное седла клапана; 14 – седло клапана; 15 – уплотнительная прокладка; 16 – пробка; 17 – пружина клапана; 18 – клапан; 19 – втулка толкателя; 20 – толкатель; 21 – уплотнитель головки поршня; 23 – уплотнитель штока поршня; 24 – заглушка; А, D – камеры, соединенные с главным цилиндром; В, С – камеры, соединенные с колесными цилиндрами задних тормозов; Е – канал подвода тормозной жидкости; К, М, Н – зазоры

При увеличении нагрузки автомобиля упругий рычаг 10 нагружается больше и усилие от рычага 5 на поршень увеличивается, т.е. момент касания головки поршня и уплотнителя 21 (см. рис. 24) достигается при большем давлении в главном тормозном цилиндре. Таким образом, эффективность задних тормозов с увеличением нагрузки увеличивается.

При отказе контура тормозов левый передний — правый задний уплотнительные кольца 10 и втулка 19 под воздействием давления жидкости в камере В сместятся в сторону пробки 16 до упора тарелки 11 в седло 14. Давление в заднем тормозе будет регулироваться частью регулятора, которая включает в себя поршень 2 с уплотнителем 21 и втулкой 7. Работа этой части регулятора, при отказе названного контура, аналогична работе при исправной системе. Характер изменения давления на выходе регулятора такой же, как и при исправной системе.

При отказе контура тормозов правый передний — левый задний толкатель 20 с втулкой 19, уплотнительными кольцами 10 под воздействием давления тормозной жидкости смещается в сторону поршня, выдвигая его из корпуса. Зазор М увеличивается, а зазор Н уменьшается. Когда клапан 18 коснется седла 14, рост давления в камере С прекращается, то есть регулятор в этом случае работает как ограничитель давления. Однако достигнутое значение давления достаточно для надежной работы заднего тормоза.

В корпусе 1 регулятора давления выполнено отверстие, закрытое заглушкой 24. Течь жидкости из-под заглушки при ее выдавливании свидетельствует о негерметичности колец 10.

Главный цилиндр двухсекционный, с последовательным расположением поршней (рис.25). На корпусе главного цилиндра закреплен бачок 6 (см. рис. 22), в наливной горловине которого установлен датчик аварийного уровня тормозной жидкости. Уплотнительные кольца высокого давления и кольца заднего колесного цилиндра взаимозаменяемы.

Рисунок 25 - Главный цилиндр

1 – корпус цилиндра; 2, 3 – поршни привода контуров тормозов;

4 – распорная шайба; 5 – толкатель

Тормозные механизмы передних колес дисковые, с автоматической регулировкой зазора между колодками и диском, с плавающей скобой. Скоба образована суппортом 3 (рис. 26) и колесным цилиндром 5, которые стянуты болтами. Подвижная скоба прикреплена болтами к пальцам 8, которые установлены в отверстиях направляющей 2 колодок. В эти отверстия заложена смазка, между пальцами и направляющей колодок установлены резиновые чехлы 9. К пазам направляющей поджаты пружинами тормозные колодки 10. В полости цилиндра 5 установлен поршень с уплотнительным кольцом. За счет упругости этого кольца поддерживается оптимальный зазор между колодками и диском.

Рисунок 26 - Тормозной механизм переднего колеса

1 – тормозной диск; 2 – направляющая колодок; 3 – суппорт; 4 – защитный кожух; 5 – рабочий цилиндр; 6 – тормозной шланг; 7 – клапан выпуска воздуха; 8 – направляющий палец; 9 – защитный чехол направляющего пальца; 10 – тормозные колодки

Тормозной механизм заднего колеса (рис. 27) барабанный, с автоматическим регулированием зазора между колодками и барабаном. Тормозные колодки 1 и 6 приводятся в действие одним гидравлическим рабочим цилиндром 9 с двумя поршнями.

Стояночная тормозная система с механическим приводом действует на тормозные механизмы задних колес. Привод стояночного тормоза состоит из рычага 2 (рис. 28), регулировочной тяги 4, уравнителя 5, троса 8, рычага 2 ручного привода колодок и разжимной планки 8 (см. рис. 27).

Рисунок 27 - Тормозной механизм заднего колеса

1 – тормозная колодка задняя; 2 – рычаг привода стояночного тормоза; 3 – нижняя стяжная пружина колодок; 4 – щит тормозного механизма; 5 – трос привода стояночного тормоза; 6 – тормозная колодка передняя; 7 – направляющая пружина; 8 – разжимная планка; 9 – рабочий цилиндр; 10 – верхняя стяжная пружина колодок; 11 – палец рычага привода стояночного тормоза.

Рисунок 28 - Привод стояночной тормозной системы

1 – кнопка фиксации рычага; 2 – рычаг привода стояночного тормоза; 3 – защитный чехол; 4 – тяга; 5 – уравнитель троса; 6 – регулировочная гайка; 7 – контргайка; 8 – трос; 9 – оболочка троса

Датчик аварийного уровня тормозной жидкости механического типа. Корпус 2 (рис. 29) датчика с уплотнителем 4 и основание 3 с отражателем 6 поджаты зажимным кольцом 5 к торцу горловины бачка. Через отверстие основания проходит толкатель 7, соединенный с поплавком 9 с помощью втулки 8. На толкателе расположен подвижный контакт 11, а на корпусе датчика находятся неподвижные контакты 10. Полость контактов герметизирована защитным колпачком 1. При снижении уровня тормозной жидкости в бачке до предельно допустимого подвижный контакт опускается на неподвижные контакты и замыкает цепь лампы аварийной сигнализации в комбинации приборов.

Рисунок 29 - Датчик аварийного уровня тормозной жидкости

1 – защитный колпачок; 2 – корпус датчика; 3 – основание датчика; 4 – уплотнительное кольцо; 5 – зажимное кольцо; 6 – отражатель; 7 – толкатель; 8 – втулка; 9 – поплавок; 10 – неподвижные контакты; 11 – подвижный контакт.

г) Расчеты.

Удельная нагрузка на тормозные накладки

, (71)

где — суммарная площадь тормозных накладок рабочей системы; Ga— вес авто­мобиля.

Средние значения удельной нагрузки, по статистическим данным, составляют: для легковых автомобилей 10...20 Н/см2; для грузовых автомобилей 20...40 Н/см2; для автобусов 25...40 Н/см2.

Эти данные отно­сятся к автомобилям с барабанными тор­мозными механизмами.

Для автомобилей с дисковыми тормозными механизмами удельные нагрузки соответственно выше.

Удельная работа трения

, (72)

где А = mav2/2— кинетическая энергия ав­томобиля при максимальной скорости начала торможения, считая, что она пол­ностью поглощается тормозными механиз­мами.

Средние значения удельной работы: для грузовых авто­мобилей 0,6...0,8 кДж/см2.

От удельной работы зависит износ и наг­рев элементов тормозного механизма: тормозного барабана (диска), тормозных накладок. Для уменьшения удельной рабо­ты необходимо увеличивать площадь тор­мозных накладок и соответственно ширину тормозных барабанов и их диаметр. При этом увеличение поверхности охлаждения благоприятно сказывается на режиме тор­можения. Этим объясняется наблюдаемая в последнее время тенденция увеличения размера колес легковых автомобилей для возможности размещения тормозных ба­рабанов увеличенных размеров.

Нагрев тормозного барабана (диска) за одно торможение

, (73)

где — масса автомобиля, приходя­щаяся на тормозящее колесо; — масса барабана;

С— удельная теплоемкость чу­гуна или стали, С = 500 Дж/(кг-К).

Нагрев барабана (диска) за одно тормо­жение не должен превышать 20е С.

Гидравлическая часть привода

Усилие на педали можно вычислить исходя из максимального давления приводе:

, (74)

где р'ж— давление жидкости в при экстренном торможении; ; главного цилиндра; — перед число педального привода( ); — коэффициент полезного а привода ( = 0,92...0,95).

При этом усилие, создаваемое цилиндром на тормозные колодки

, (75)

где — диаметр рабочего цилиндра =(0,9...1,2)

Усилие на тормозной педали также определить исходя из максимально возможного по условиям сцепления колеса с дорогой тормозного момента:

, (76)

Найдя приводные силы Р' и Р" и разделив на передаточное число привода (гидравлической и механической частей), можно определить усилие на педали (при равных приводных силах):

(77)

Ход педали зависит от числа тормозных механизмов и общего передаточного числа тормозного привода. Полный ход педали должен вклю­чать запас хода, компенсирующий износ накладок.