Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
11111111.docx
Скачиваний:
8
Добавлен:
26.09.2019
Размер:
1.06 Mб
Скачать

38)1.Бипризма Френеля.

Изготовленные из одного куска стекла две призмы с малым преломляющим углом д имеют одну общую грань (рис. 121.2). Параллельно этой грани на расстоянии а от нее рас­полагаетсяпрямолинейный источник света S.

Можно показать, что в случае, когда преломляющий луч призмы очень мал и углы падения лучей на грань призмы не очень велики, все лучи отклоняются призмой на практически одинаковый угол, равный (п — показатель преломления призмы). Угол падения лучей на бипризму невелик. Поэтому все лучи отклоняются каждой из по­ловин бипризмы на одинаковый угол. В результате образуются две когерентные цилиндрические волны, исходящие из мнимых источников Si и S2, лежащих в одной плоскости с S. Расстояниемежду источниками равно

Максимальное число наблюдаемых полос

(121.4) Расстояние от источников до экрана

2)Термин когерентность волн характеризует способность волн при наложении интерферировать. Волны называются когерентными, если при их наложении возникает интерференционная картина и некогерентными, если при их наложении интенсивности волн суммируются и интерференционная картина не возникает. Волны когерентны, если разность фаз между ними остается постоянной во время наблюдения. Для некогерентных волн разность фаз между ними хаотически изменяется во времени

Оптическую разность хода (), т.е. разность оптических длин путей двух волн ( L 01 и L02 ):φ = k (Lo1- Lo2 ) = k ∆ (7)

. 3) Под интерференцией света обычно понимают широкий круг явлений, в которых при наложении световых волн результирующая интенсивность не равна сумме интенсивностей отдельных волн: в одних местах она больше, в других – меньше, т.е. возникают чередующиеся светлые и темные участки – интерференционные полосы. Другими словами, интерференцией называется изменение средней плотности потока энергии, обусловленное суперпозицией электромагнитных волн.

3 9) Интерференция в тонких пленках. При распространении световой волны в среде уменьшается скорость распространения волны и соответственно ее длина волны, т.к. ее частота не изменяется. При расчете изменения фаз волны в среде в качестве длины пути удобнее брать оптическую длину пути, равную геометрической длине, умноженной на показатель преломления:

. (6.28)

Тогда длину волны и волновой вектор в формулах можно задавать равными их значениям в вакууме.

а) Полосы равного наклона. Рассмотрим случай, когда плоская монохроматическая волна падает под углом j на поверхность плоскопараллельной пластинки с относительным показателем преломления n и толщиной h (рис.6.7). Интерференция возникает между двумя волнами, отраженными от верхней и нижней поверхностями пластины. Так как эти пучки параллельны между собой, то интерференция наблюдается (локализована) или на бесконечности или в фокальной плоскости F линзы Л. С учетом потери полволны на границе раздела сред (если n > 1, то в точке A, если n < 1, то в точке B) оптическая разность хода в данном случае равна

. (6.29)

Из геометрии рисунка (вывести самостоятельно !) получаем для оптической разности хода:

. (6.30)

Условием максимума интерференционной картины по-прежнему является

. (6.31)

а условием минимума –

(6.32)

Если на пластинку падают непараллельные пучки света, то и интерферирующие пучки будут иметь всевозможные направления распространения. При заданных толщине пластины и показателе преломления каждому углу падения волны соответствует своя интерференционная полоса. Поэтому такие полосы и называют полосами равного наклона. При аксиально симметричном распределении падающих пучков линии равного наклона являются окружностями.Даже если источник света протяженный и различные его точки излучают некогерентно, то интерференционные картины не зависят от фазы волны в точке расщепления пучков на поверхности пластины (точка A на рис. 6.7) и от положения этой точки, а зависят лишь от угла падения. Поэтому конечность размеров источника не смазывает картину полос равного наклона и не является ограничивающим интерференцию фактором.

Если падающий свет не монохроматичный, при увеличении разности длин падающих волн интерференционные кольца разделяются и при некотором значении этой разности полосы соседних порядков перекрываются. Разность длин волн, при которой наступает перекрытие полос соседних порядков интерференции, называется дисперсионной областью (или областью свободной дисперсии). Немонохроматичность ухудшает видность интерференционной картины. С другой стороны, увеличение толщины пластины уменьшает дисперсионную область. Для наблюдения интерференции в белом свете толщина должна быть достаточно малой (~ 10 мкм). Поэтому в данном случае речь идет об интерференции в тонких пленках.

б) Полосы равной толщины. Теперь рассмотрим интерференцию света на пластинке с переменной толщиной (клине) (рис.6.8). В световом потоке, исходящем из источника S монохроматического света всегда присутствует волна 2, интерферирующая в точке C с волной 1, прошедшей по пути SABC. Если источник расположен достаточно далеко от поверхности клина и угол между поверхностями клина достаточно мал (эти условия на практике при изучении такой схемы интерференции, как правило, выполняются), то оптическая разность хода приблизительно определяется при прочих равных условиях толщиной клина в точке C и высчитывается по той же формуле, что и (6.30). Однако в этом случае интерференционная картина локализована на верхней поверхности клина. Интерференционную картину можно также наблюдать и с помощью линзы на экране. В этом случае поверхность проецируется на экран наблюдения. Линии одинаковой интенсивности совпадают с линиями постоянной толщины пластины, поэтому соответствующие интерференционные полосы называются полосами равной толщины. Ограничения на толщину клиновидной пластины, связанные со степенью когерентности (или монохроматичности) такие же, как и в случае плоскопараллельной пластины.

40. Согласно принципу Гюйгенса — Френеля, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле — любое отклонение распространения волн вблизи препятст­вий от законов геометрической оптики.Явление дифракции объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени.

41. Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья. Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d.Если известно число штрихов (), приходящихся на 1 мм решётки, то период решётки находят по формуле:

Условия интерференционных максимумов дифракционной решётки, наблюдаемых под определёнными углами, имеют вид:

Если же свет падает на решётку под углом , то

В состав видимого света входят монохроматические волны с различными значениями длин. В излучении нагретых тел (нить лампы накаливания) длины волн непрерывно заполняют весь диапазон видимого света. Такое излучение называется белым светом. Свет, испускаемый, например, газоразрядными лампами и многими другими источниками, содержит в своем составе отдельные монохроматические составляющие с некоторыми выделенными значениями длин волн. Совокупность монохроматических компонент в излучении называется спектром. Белый свет имеет непрерывный спектр, излучение источников, в которых свет испускается атомами вещества, имеет дискретный спектр. Приборы, с помощью которых исследуются спектры излучения источников, называются спектральными приборами.

42) 1.ДИХРОИЗМ, свойство некоторых кристаллов, проявляющееся в том, что они меняют окраску в зависимости от направления падающего на них света. Суть явления заключается в том, что кристалл пропускает световые колебания в одной плоскости, но поглощает световые колебания, если они направлены под прямым углом к этой плоскости. Примером природного дихроизма служат кристаллы турмалина; одним из синтетических материалов, имеющих это свойство, является пленка «поляроид». 2.Волны естетственного (правильнее сказать - "неполяризованного") света имеют различные направления относительно оси напряженности электромагнитного поля. Поляризованный свет имеет волну лишь в одной плоскости 4

.Поляризаторы и анализаторы.Закон Малюса.

Поляризаторы-приборы дающие возможность получить поляризованный свет.Анализаторы-это приборы с помощью которых можно проанализировать является ли свет поляризованным или нет.Конструктивно поляризатор и анализатор это одно и тоже.З-н Малюса.Пусть на поляризатор падает свет интенсивности ,если свет является естеств-ым то у него все направления вектора E равны вероятны.Каждый вектор можно разложить на две взаимно перпендикулярные составляющие:одна из которых параллельна плоскости поляризации поляризатора,а другая ей перпендикулярна.

Очевидно интенсивность света вышедшего из поляризатора будет равна .Обозначим интенсивность света вышедшего из поляризатора через ( ).Если на пути поляриз-го свеа поставить анализатор главная плоскость которого составляет угол с главной плоскостью поляризатора,тогда интенсивность вышедшего из анализатора определяется законом .

43) Групповая скорость.Дисперсия света. Фазовая скорость волны может зависить от ее частоты w, это явление называется дисперсией. Среда, при распространении в которой волны, ее фазовая скорость зависит от частоты, называется дисперсирующей средой Скорость переноса энергии называется групповой скоростью, она определяется как: u(вектор)=S(вектор)/w

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]