Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на экзамен строймат..docx
Скачиваний:
25
Добавлен:
27.09.2019
Размер:
192.37 Кб
Скачать

61. Герметик – это материал, в основном предназначен для герметизации стыков наружных стеновых панелей в крупнопанельном домостроении, осадочных и температурных швов в строительных конструкциях.

Герметизирующие материалы, изготовленные на основе полимеров, характеризуются водо-, газо- и воздухонепроницаемостью, гнилостойкостью, хорошей адгезией к большинству строительных материалов, стойкостью к коррозии.

Герметики или их составляющие изготовляют в заводских условиях и на объект они поступают в готовом к употреблению виде.

Вулканизирующие пасты

Герметики, относящиеся к этой группе, представляют собой вязкотекучие, пастообразные составы, переходящие в резиноподобные состояние при добавке специальных вулканизирующих агентов. Наиболее ценным качеством таких паст является то, что они вулканизируются без усадки, обеспечивая полную надёжность герметизации. К вулканизирующимся пастовым герметикам относятся тиоколовые герметики, мастика «полиэф», пенополиуретановый герметик и мастика ЦПЛ-2.

Пластоэластичные мастики.

К этой группе относятся мастики, изготовленные на основе высокомолекулярного полиизобутилена. Они отличаются высокой эластичностью, атмосферостойкостью, хорошей адгезией к основанию, обладают абсолютной влаго-, паро- и воздухонепроницаемостью, способностью заполнять полости стыков любой конфигурации.

Профильные эластичные прокладки.

Уплотняющие прокладки, изготовляются в виде полос и жгутов с различными профилями поперечного сечения, применяют для герметизации вертикальных и горизонтальных стыков панелей наружных стен, а также для герметизации зазоров между деревянными или алюминиевыми оконными коробками и примыкающими к ним поверхностям панелей. Наибольшее применение в строительстве получили профильные прокладки пороизол, гернит, УГС, УП-50 и пенополиретановые.

62. Благодаря реакциям двух типов поликонденсации и полимеризации, получают синтетические полимеры.

Реакции полимеризации происходят за счет кратных связей (С = С, С = О и др.), и проходят, как процесс соединения друг с другом большого числа молекул мономера. Так же реакция происходит за счет раскрытия циклов гетероатомов,- всех атомов, кроме атома углерода.

Это один из методов синтеза полимеров, при котором взаимодействие мономеров не сопровождается выделением побочным низкомолекулярных соединений. В результате этого, мономеры и полимеры имеют одинаковый состав элементов.

Поликонденсация - метод синтеза полимеров, при котором взаимодействие молекул мономеров обычно сопровождается выделением побочных низкомолекулярных соединений - воды, спирта и т.д. Это взаимосвязь мономеров, содержащих две и более функциональные группы (ОН, СО, СОС, NHS и др.). Полимеры же, получаемые с помощью этой реакции по элементному составу совершенно не совпадают с исходными мономерами.

Полимеризационная реакция мономеров с кратными связями происходит с помощью разрыва непредельных связей, по законам цепных реакций.

При цепной полимеризации, макромолекула имеет способность быстро образовываться и приобретать сразу окончательный размер, то есть не увеличиваться при возрастании длительности самого процесса.

Реакция полимеризации мономеров циклического строения происходит в результате раскрытия цикла, и, зачастую проходит не по цепному механизму, а по ступенчатому.

В случае ступенчатой полимеризации, макромолекула образовывается поэтапно. Вначале образуется димер, со временем - тример и так далее. В этом случае, молекулярная масса полимера увеличивается по прошествии определенного времени.

Цепная же полимеризация принципиально отличается от ступенчатой полимеризации и поликонденсации. Ее отличия состоят в том, что на любой стадии процесса, активная смесь всегда состоит из полимера и мономера. Она не вмещает в себе ди-, три-, тетрамеров. При увеличении длительности реакции, мономер используется постепенно, а число макромолекул полимера постоянно растет. Переработка мономера определяет только выход полимера. От степени завершенности реакции молекулярная масса полимера совершенно не зависит.

63. Пластма́ссы — органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры). Исключительно широкое применение получили пластмассы на основе синтетических полимеров.

В зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании изделий пластмассы делят на:

-Термопласты (термопластичные пластмассы) — при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние;

-Реактопласты (термореактивные пластмассы) — в начальном состоянии имеют линейную структуру макромолекул, а при некоторой температуре отверждения приобретают сетчатую. После отверждения не могут переходить в вязкотекучее состояние. Рабочие температуры выше, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств.

Также газонаполненные пластмассы — вспененные пластические массы, обладающие малой плотностью.

64. Отрицательные свойства пластмасс — горючесть, способность изменять свои размеры в процессе эксплуатации, большое удельное электрическое сопротивление, невысокая теплостойкость, повышенная ползучесть, старение. Горючестью обладают многие виды линолеумов и отделочные пленки. При горении они выделяют ядовитые газы, легко воспламеняются. Некоторые виды пластмасс в процессе эксплуатации способны изменять свои размеры. При применении пластмасс в качестве конструкционного или отделочного материала стабильность размеров — основной фактор выбора типа полимера.

Пластмассы обладают рядом ценных свойств: они прочны, водостойки, не нуждаются в защите от гнилостных грибков и разрушающих материал насекомых, легко обрабатываются.

65. Полимерные материалы для полов разделяют на рулонные, плиточные и мастичные. Эти материалы отличаются износоустойчивостью, гигиеничностью, эластичностью, достаточной долговечностью.

Рулонные и плиточные полимерные материалы классифицируют по следующим показателям: основному сырью, структуре, жесткости и внешнему виду.

По основному сырью рулонные полимерные материалы для полов подразделяют на поливинилхлоридные, алкидные, резиновые, коллоксилиновые и на основе синтетических волокон, а плиточные полимерные изделия, кроме того, — на кумароновые, фенолитовые, полимерцементные и полимербетонные.

По структуре различают полимерные рулонные материалы и плиточные изделия бесподосновные (одно- и многослойные) и с подосновой (тканевой, пленочной, картонной и теплозвукоизолирующей). Теплозвукоизолирующая подоснова может быть волокнистой, пористой и пробковой.

В зависимости от жесткости полимерные плиточные изделия делят на жесткие (образуют трещины при изгибе образца вокруг стержня диаметром 100 мм), полужесткие (не образуют трещин при изгибе образца) и гибкие (не образуют трещин при изгибе образца вокруг стержня диаметром менее 100 мм). К гибким относятся все рулонные полимерные материалы.

Внешний вид рулонных материалов и плиточных изделий определяется их формой, цветом и фактурой. По форме они могут быть квадратными, прямоугольными, полосовыми, фигурными и «размером на помещение», а по цвету — одно- и многоцветными, с гладкой, рифленой, тисненой и ворсовой фактурой.

66. К полимерным строительным материалам (пластмассам) принадлежат, как правило, многокомпонентные системы, в которые в качестве связующих входят полимеры. Кроме полимеров, в состав пластмасс могут входить наполнители, пластификаторы, стабилизаторы, красители и другие добавки.

Полимерные строительные материалы и изделия классифицируют по различным признакам: по назначению (для покрытия полов, отделки стен, строительных конструкций и т. п.); по основному полимеру, входящему в их состав (поливинилхлоридные, полиэтиленовые, поливинилацетатные, полиэфирные, эпоксидные и т. п.); по способу изготовления (прессованные, каландрированные, экструзионные, литые и др.); по структуре (плотные, ячеистые, крупнопористые, волокнистые, слоистые, без подосновы, на подоснове и т. п.); по жесткости (жесткие, полужесткие, мягкие, гибкие); по внешнему виду (рулонные, листовые, плиточные, погонажные, мастичные); по фактуре лицевой поверхности (гладкие, рифленые, тисненые и др.); по цвету (одно- и многоцветные).

В зависимости от характерных технических свойств пластмассы классифицируют на группы:

Общего назначения: Поливинилхлорид, полипропилен, фенопласты, аминопласты

Высокопрочные : Полиформальдегид, этролы, фенопласты, эпоксидные и полиэфирные стеклопластики, поликарбонат, полиуретаны, полиамиды

Теплостойкие: Политетрафторэтилен, политрифторхлорэтилен, полипропилен, фенопласты, полиорганосилоксаны

Негорючие или самогасящиеся: Поливинилхлорид, модифицированный полиэтилен, политетрафторэтилен, модифицированные полиэфирные стеклопластики, фурановые пластмассы

Морозостойкие: Разветвленный полиэтилен, полиизобутилен, этилцеллюлоза, полиорганосилоксаны, поликарбонат, некоторые виды каучуков

Электроизоляционные: Полиэтилен, поливинилхлорид, полистирол, полиорганосилоксаны, фторопласты, полиэтилентерфталат, эпоксидные пластмассы

Прозрачные: Полиметилметакрилат, поливинилбутираль, полистирол, ацетилцеллюлоза, поликарбонат, полиэтилентерфталат, полиэфиракрилаты и полиэфирмалеинаты

Антикоррозийные: Каучуки, полиизобутилен, эпоксипласты, фурановые пластмассы, поливинилхлорид, инден-кумароновые полимеры

67. Коррозионная стойкость и небольшая плотность пластмасс открывают широкие перспективы для изготовления из них труб для водоснабжения, канализации и транспортирования агрессивных жидкостей, а также для изготовления санитарно-технических изделий.

Пластмассовые грубы легче металлических в 4...5 раз при той же пропускной способности. Соединение труб может быть осуществлено различными способами: сваркой, склеиванием или на резьбе. Недостаток пластмассовых труб — низкая теплостойкость (для большинства из них 6О...8О°С). Для производства труб применяют главным образом пластмассы на основе полиэтилена, поливинилхлорида и полипропилена. Прозрачные трубы получают из полиметилметакрилата, а трубы повышенной прочности — из стеклопластика. Пластмассовые трубы используют для холодного водоснабжения, для канализации, водостоков, скрытой проводки, дренажа, а трубы-шланги— в сельском хозяйстве. Все виды пластмассовых труб снабжают фасонными деталями.

Санитарно-технические изделия из пластмасс (смывные бачки, смесители, раковины, ванны) изготовляют прессованием из фенолформальдегидных, карбамидных и других полимеров, а мелкие изделия (вентиляционные детали, крючки и т. п.) получают методом литья под давлением или штампованием в основном из полистирола. Санитарно-технические изделия из пластмасс отличаются легкостью, высокой механической прочностью, стойкостью, к коррозии растворов кислот, щелочей, красивым внешним видом. Недостаток пластмассовых изделий — малая поверхностная твердость (они сравнительно легко царапаются и теряют внешний вид). Использование пластмассовых труб и санитарно-технических изделий дает существенную экономию черных и цветных металлов, потребляемых строительством.

68. Клеи и мастики для крепления отделочных материалов и изделий представляют собой клейкие пастообразные композиции, состоящие из клеящей основы — полимеров, растворителей, пластифицирующих компонентов, наполнителей, разжижителей и в отдельных случаях отвердителей. Для крепления отделочных материалов и изделий клеи и мастики делят на две группы: первые — для приклеивания материалов покрытий полов и погонажных изделий и вторые — для крепления материалов при отделке стен, потолков и встроенной мебели. В зависимости от вида связующего различают клеи и мастики битумные, полимерные, каучуковые, нитроцеллюлозные и казеиновые. Для крепления рулонных, плиточных и листовых материалов к полам применяют битумные горячие и холодные мастики: битумно-каучуковую мастику, состоящую из битума, бензина, каолина и резинового клея; резинобитумную мастику изол, состоящую из девулканизированной старой резины, битума, кумаронового полимера, бензина, рубракса, канифоли, креозотового масла и асбеста и другие мастики. Битумные мастики, применяемые в холодном состоянии, перед употреблением в случае загустевания разбавляют бензином. Для крепления отделочных материалов для полов применяют также дифенольную мастику, состоящую из смолы, наполнителя и формалина; фенолоформальдегидную мастику — из фенолоформальдегидного полимера, керосинового контакта и мела; коллоксилиновую (нитроцеллюлозную) мастику — из обрезков коллоксилинового линолеума и ацетона; казеиноцементную мастику — из казеинового клея ОБ, портландцемента и воды.

В зависимости от методов применения клеи для строительных конструкций делят на три вида: клеи холодного (при температуре 16...30°С), теплого (при температуре 40...90°С) и горячего отверждения (при температуре 100...160°С). По виду связующего — фенольные, эпоксидные, каучуковые, мочевинные и полиэфирные. Могут использоваться также и модифицированные системы на основе указанных клеев.

Фенольные клеи холодного и теплого отверждения, состоящие из фенолоформальдегидного полимера, отвердителя и наполнителя, применяют для склеивания стеклопластиков, пенопластов, сотопластов и древесины между собой, а также с асбестоцементными и алюминиевыми сплавами. Фенольный клей горячего отверждения, состоящий из фенолоформальдегидного полимера и наполнителя, применяют для склеивания асбестоцемента с сотопластами, стеклопластиков и фанеры.

Эпоксидный клей холодного и теплого отверждения, состоящий из эпоксидного полимера, модификатора, отвердителя и наполнителя, используют для склеивания асбестоцементных и цементно-бетонных материалов, алюминия и других материалов, а эпоксидный клей горячего отверждения — для склеивания различных материалов, так как он обладает значительной адгезией, малой усадкой и высокой прочностью.

Мочевинные и мочевиномеламиновые клеи холодного и горячего отверждения, состоящие из одноименных связующих, отвердителей и наполнителей, используют для склеивания древесины.

Каучуковый клей, в состав которого входят каучук, модификатор и вулканизатор, применяют для склеивания алюминия с сотами из древесноволокнистых плит пенопластами. Он обладает значительной адгезией и прочностью и очень малым водопоглощением.

Герметизирующие материалы (герметики) производят в виде паст (мастик), эластичных прокладок и лент. Их применяют для заделки швов между элементами сборных конструкций (панелями, блоками стен), швов между деталями бетона, металла, керамики, стекла и т. п. Они должны обеспечить герметичность, необходимую для восприятия температурных и усадочных деформаций и не допускать проникновение влаги через швы.

69. Теплоизоляционные материалы характеризуются малой теплопроводностью и небольшой средней плотностью из-за их пористой структуры. Их классифицируют по характеру строения: жёсткие (плиты, кирпич), гибкие (жгуты, полужёсткие плиты), рыхлые (волокнистые и порошкообразные); в виду основного сырья: органические и неорганические.

70. Неорганические теплоизоляционные материалы

Минеральная вата — спутанное волокно (диаметром 5-12 мкм), получаемое из расплавленной массы горных пород или шлаков либо в процессе распыления её тонкой струи паром под давлением. Минеральную вату используют в качестве теплоизоляции поверхностей с температурой от −200 °C до +600 °C.

Стеклянная вата — спутанное волокно, получаемое из расплавленного стекла. Её используют для приготовления теплоизоляционных изделий (матов, плит) и теплоизоляции поверхностей.

Пеностекло — пористый лёгкий материал, получаемый путём спекания смеси стекольного порошка с газообразователями (известняком, каменным углём). Изготавливают его с открытыми и закрытыми порами. Плиты из пеностекла применяют для теплоизоляции стен, покрытий, перекрытий, утепления полов.

Коэффициент теплопроводности современного пеностекла сопоставим с пенопластами: от 0,042 Вт/(м*К) при средней плотности от 100 до 200 кг/м³. Температура применения: −180 до +480 (нижний предел обусловлен конденсацией газовой фазы в ячейках пеностекла, верхний — началом размягчения стеклянной матрицы).

Наиболее качественным считается пеностекло с мелкими закрытыми порами одинакового размера.

Пеноизол — универсальный утеплитель, который относится к новому поколению карбомидных теплоизоляционных пенопластов, имеет высокие теплоудерживающие способности, низкую объёмную плотность, стойкость к действию микроорганизмов и грызунов.