Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Линейное программирование.doc
Скачиваний:
15
Добавлен:
27.09.2019
Размер:
1.46 Mб
Скачать

Доказательство:

Пусть  наш опорный план и - произвольный план. Тогда имеем

(1.39)

(1.40)

Покажем, что .

По предположению, все j то есть . Кроме того, все . Поэтому

(1.41)

Подставим в (1.39) вместо их разложения по базису

и изменим порядок суммирования

(1.42)

Аналогично, подставляя в (1.41) для каждого j выражение из формулы (1.37), получим:

Так как система векторов линейно независима, то коэффициенты разложения вектора по базису , даваемые формулами (1.42) и (1.34) должны быть одинаковы. Поэтому

получим

,

то есть любой другой план имеет не меньшее значение целевой функции, чем наш опорный план.

Эта теорема дает критерий оптимальности опорного плана.

Теоремы 1.9 и 1.10 дают возможность, начав с некоторого исходного опорного плана, получать последовательность все более лучших опорных планов, которые завершатся либо оптимальным планом, либо будет показано, что целевая функция неограничена.

Отметим следующее:

  1. Если при вычислении минимум достигается при нескольких i, то для вывода из базиса обычно берут вектор с наименьшим индексом.

  2. Для определения вектора , вводимого в базис, обычно берут тот вектор , для которого разность наибольшая

2.6. Алгоритм симплекс-метода

Теперь мы в состоянии сформулировать алгоритм симплекс-метода для решения задач линейного программирования, заданных в канонической форме. Обычно он реализуется в виде так называемой симплекс-таблицы, изображенной на следующей странице.

В первом столбце этой таблицы располагаются обозначения векторов, входящих в базис.

Второй столбец  коэффициенты целевой функции, соответствующие векторам, входящим в базис.

Третий столбец  компоненты опорного плана. В дополнительной строке в этом столбце пишется величина . Её легко вычислить перемножая числа из второго столбца и третьего столбца и складывая их.

Далее идут столбцы, соответствующие всем векторам , и в этих столбцах записываются координаты этих векторов в рассматриваемом базисе. Заметим, что для векторов, входящих в базис, эти координаты имеют вид (0,0, ... ,0,1,0, ..., 0), где единица стоит в той строке, где находится сам этот базисный вектор.

В дополнительной строке сверху обычно выписывают коэффициенты , соответствующие этим векторам.

В дополнительной строке снизу пишутся величины , вычисляемые по формулам:

.

Заметим, что для векторов, входящих в базис, эти разности всегда равны нулю.

Далее идут следующие этапы, связанные с преобразованием этой таблицы. При ручном счете каждый раз эту таблицу лучше переписывать заново, при счете на ЭВМ (который, естественно, всегда используется при решении практических, а не учебных задач), эта таблица просто преобразуется в памяти ЭВМ.

Этап 1 Просматривается дополнительная строка снизу, где записаны разности .

Если все эти разности ,

то план является оптимальным

Этап 2

Если есть столбцы, где , то выбирается столбец с максимальным значением этой разности. Индекс j определит вектор, вводимый в базис.

Пусть , то есть в базис надо вводить вектор . Назовем столбец, соответствующий этому вектору, направляющим столбцом. В дальнейшем мы будем направляющий столбец помечать символом .

Этап 3

Просматривается столбец, соответствующий этому вектору. Если все , то значения целевой функции неограничены снизу. Если есть , то находятся

где просматриваются лишь те дроби ,

для которых



Пусть этот минимум достигается для вектора . Тогда именно вектор подлежит выводу из базиса. Строка, соответствующая этому вектору, называется направляющей строкой. В дальнейшем в примерах мы будем

помечать ее символом .

 

Этап 4

После того, как определены направляющие столбец и строка, начинает заполняться новая симплекс-таблица, в которой на месте направляющей

строки будет стоять вектор .

 

Обычно заполнение этой новой таблицы начинается именно с направляющей строки. В качестве компоненты опорного плана туда

пишется величина , то есть

 

.

Остальные элементы этой строки заполняются величинами

.

Обратите внимание на особую роль элемента , стоящего на пересечении направляющей строки и направляющего столбца. Именно на него делятся все бывшие элементы направляющей строки. На месте бывшего элемента автоматически появляется единица.

Написанные выше формулы для пересчета элементов направляющей строки можно записать следующим правилом:

.

Этап 5

Далее начинается пересчет всех остальных строк таблицы, включая и дополнительную нижнюю строку по формулам: для компонент плана

;

для координат разложения по базису

;

для дополнительной строки

.

Обратите внимание на то, что все эти формулы по сути дела строятся по одному правилу

.

Это правило применимо и к компонентам плана, и к величинам , и к разностям . Его даже можно использовать для пересчета элементов самого направляющего столбца, хотя проще заполнить его нулями, оставив

1 на месте бывшего элемента .

 

 

Далее итерации продолжаются.

Пример

Решить задачу линейного программирования

В данном случае вектор равен (0,1,-3,0,2,0), а в векторной форме ограничения могут быть записаны в виде

.

Заполним исходную симплекс-таблицу, взяв в качестве исходного базиса

вектора ,

что удобно из-за их вида.

Исходная симплекс-таблица

 

Ба-

План

0

1

-3

0

2

0

 

зис

 

 

 

0

7

1

3

-1

0

2

0

0

12

0

-2

4

1

0

0

 

0

10

0

-4

3

0

8

1

 

 

 

0

0

-1

3

0

-2

0

 

 

 

 

 

 

 

 

 

Обратите внимание на то, что из-за специфического вида векторов в столбец "план" просто переписался вектор , а в качестве координат векторов в нашем базисе стоят просто сами векторы.

Ну, а величины приходится считать: