Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
275820_9DBBC_15000_znakov_perevod_stati_gidroel...doc
Скачиваний:
11
Добавлен:
09.11.2019
Размер:
82.94 Кб
Скачать

Population relocation

16.Another disadvantage of hydroelectric dams is the need to relocate the people living where the reservoirs are planned. In February 2008, it was estimated that 40-80 million people worldwide had been physically displaced as a direct result of dam construction. In many cases, no amount of compensation can replace ancestral and cultural attachments to places that have spiritual value to the displaced population. Additionally, historically and culturally important sites can be flooded and lost. Such problems have arisen at the Three Gorges Dam project in China, the Clyde Dam in New Zealand and the Ilısu Dam in Southeastern Turkey.

Dam failures

17.Failures of large dams, while rare, are potentially serious — the Banqiao Dam failure in Southern China resulted in the deaths of 171,000 people and left millions homeless. Dams may be subject to enemy bombardment during wartime, sabotage and terrorism. Smaller dams and micro hydro facilities are less vulnerable to these threats. The creation of a dam in a geologically inappropriate location may cause disasters like the one of the Vajont Dam in Italy, where almost 2000 people died, in 1963.

Affected by flow shortage

18.Changes in the amount of river flow will correlate with the amount of energy produced by a dam. Because of global warming, the volume of glaciers has decreased, such as the North Cascades glaciers, which have lost a third of their volume since 1950, resulting in stream flows that have decreased by as much as 34%. The result of diminished river flow can be power shortages in areas that depend heavily on hydroelectric power.

Comparison with other methods of power generation

19. Hydroelectricity eliminates the flue gas emissions from fossil fuel combustion, including pollutants such as sulfur dioxide, nitric oxide, carbon monoxide, dust, and mercury in the coal. Hydroelectricity also avoids the hazards of coal mining and the indirect health effects of coal emissions. Compared to nuclear power, hydroelectricity generates no nuclear waste, has none of the dangers associated with uranium mining, nor nuclear leaks. Unlike uranium, hydroelectricity is also a renewable energy source.

20.Compared to wind farms, hydroelectricity power plants have a more predictable load factor. If the project has a storage reservoir, it can be dispatched to generate power when needed. Hydroelectric plants can be easily regulated to follow variations in power demand.

21.Unlike fossil-fuel combustion turbines, construction of a hydroelectric plant requires a long lead-time for site studies, hydrological studies, and environmental impact assessment. Hydrological data up to 50 years or more is usually required to determine the best sites and operating regimes for a large hydroelectric plant. Unlike plants operated by fuel, such as fossil or nuclear energy, the number of sites that can be economically developed for hydroelectric production is limited; in many areas the most cost effective sites have already been exploited. New hydro sites tend to be far from population centers and require extensive transmission lines. Hydroelectric generation depends on rainfall in the watershed, and may be significantly reduced in years of low rainfall or snowmelt. Long-term energy yield may be affected by climate change. Utilities that primarily use hydroelectric power may spend additional capital to build extra capacity to ensure sufficient power is available in low water years.

22.In parts of Canada (the provinces of British Columbia, Manitoba, Ontario, Quebec, Newfoundland and Labrador) hydroelectricity is used so extensively that the word "hydro" is often used to refer to any electricity delivered by a power utility. The government-run power utilities in these provinces are called BC Hydro, Manitoba Hydro, Hydro One (formerly "Ontario Hydro"), Hydro-Québec and Newfoundland and Labrador Hydro respectively. Hydro-Québec is the world's largest hydroelectric generating company, with a total installed capacity (2007) of 35,647 MW.

Гидроэлектроэнергия

1.Гидроэлектроэнергия - электричество созданное гидроэнергетикой, то есть, энергия произведённая в результате падения или течения воды под действием сил гравитации. Это наиболее широко использованная форма возобновляемой энергии. Однажды построенный гидроэлектроэнергетический комплекс не создает никаких отходов, а также обладает более низким уровнем производства парникового газа – оксида углерода, чем при сжигании органического топлива для получения энергии на заводах. Во всем мире, гидроэлектроэнергетика произвела около 715,000 мегаватт электроэнергии в 2005. Это составило приблизительно 19% всемирного электричества (в сравнении с 16% в 2003), и составляет более 63% электроэнергии из возобновляемых источников.

Производство электроэнергии

2.Большая часть гидроэлектроэнергии создается за счет потенциальной энергии запруженной воды, которая приводит в действие водяную турбину и генератор. В этом случае энергия извлеченная из воды зависит от объема и разницы в высоте между источником и водостоком. Это различие высоты называется напор. Сумма потенциальной энергии воды пропорциональна напору. Чтобы получить очень высокий напор, вода для гидравлической турбины может быть пущена через большую трубу названую шлюзом.

3.Гидроаккумулирующие электростанции производят электроэнергию во время пиков нагрузки, перемещая воду между резервуарами с различными высотами. Во время низкого электропотребления, избыток энергии используется, чтобы закачать воду в более высокий резервуар. Когда появляется максимум потребления, вода снова спускается в более низкий резервуар через турбину. Гидроаккумулирующие схемы в настоящее время снабжают только важные коммерческие крупномасштабные энергосети сохраняя суточную нагрузку генерирующей системы. Гидроэлектрические заводы без возможности сохранять воду называются русловыми ГЭС. Приливная электростанция использует ежедневное повышение и падение воды из-за приливов и отливов; такие источники - очень предсказуемые, и если условия разрешают конструкцию водохранилищ, то они также могут быть использованы, чтобы генерировать мощность в течение максимумов потребления.

4.Менее распространенные типы гидро схем используют кинетическую энергию воды или незапруженные источники как например, колесо мельницы.

5.Существует простая формула, чтобы определять количество электроэнергии произведенное на гидростанции: P = hrgk, где P - мощность в киловаттах, h - напор в метрах, r - расход воды в кубических метрах в секунду, g - ускорение свободного падения 9,8 м/с2, и k - коэффициент полезного действия, колеблющийся от 0 до 1. Эффективность часто более высокая с большими и более современными турбинами.

Годовое производство электроэнергии зависит от количества поступающей воды. В некоторых системах скорость течения воды может изменяться с коэффициентом 10:1 в течение года.

Промышленные гидроэлектростанции

6.Пока много гидроэлектростанций снабжают общественные сети электричеством, некоторые созданы, чтобы обслуживать специфические промышленные предприятия. Специализированные гидроэлектростанции часто строятся, чтобы обеспечить надежное снабжение электричеством необходимое для алюминиевых электролитических заводов. В Шотландских Горах есть примеры в Kinlochleven и Lochaber, созданные в начале 20-ого столетия. The Grand Coulee Dam самая длинная в мире, во время Второй Мировой Войны снабжала Alcoa alluminium в Bellingham, Вашингтон который производил Американские самолёты, после войны, с её помощью осуществляется орошение и снабжение энергией граждан (дополнительно к алюминиевой нагрузке). В Суринами, Brokopondo Reservoir был создан, чтобы обеспечить электричеством Alcoa aluminium. Новозеландская электростанция Manapouri была создана, чтобы снабжать электричеством печь для расплавки алюминия в Tiwai Point.

Небольшие гидроэлектростанции

7.Хотя большие гидроэлектростанции генерируют большую часть мировой гидроэлектроэнергии, в некоторых ситуациях требуются небольшие гидроэлектростанции. Такие станции действуют в Северной Америке и выдают до 10 или 30 мегаватт. Небольшая гидроэлектростанция может быть подключена к распределительной сети или может снабжать мощностью изолированных потребителей. Небольшие ГЭС обычно не требуют длительных экономических, инженерных и связанных с окружающей средой исследований с большими проектами, и часто могут быть построены более быстро. Небольшая ГЭС может быть использована совместно с проектом по контролю за наводнениями, для орошения или других целей, обеспечивающих дополнительный доход по проектной стоимости. В местах, где раньше использовались водяные колёса для мельниц и других целей, часто могут быть реконструированы для производства электроэнергии, тем самым исключая новое негативное влияние на окружающую среду. Небольшие ГЭС могут быть в дальнейшем разделены на миниГЭС, устройства около 1 МВт по величине, и микроГЭС , устройства от 100 кВт вплоть до нескольких кВт.

8.Небольшие ГЭС особенно популярны в Китае, который имеет более 50% от общего количества небольших ГЭС в мире.

9.Небольшие ГЭС в диапазоне от 1 МВт до 30 МВт часто доступны у многочисленных производителей использующих стандартные комплектации; один подрядчик может обеспечить все основное механическое и электрическое оборудование (турбина, генератор, элементы управления, коммутационная аппаратура) выбирающиеся из нескольких стандартных планировок подходящих для данного места. МикроГЭС используются для широкого диапазона оборудования; на маленьких производствах, промышленные центробежные насосы могут быть использованы как турбины, со сравнительно низкой стоимостью по сравнению со специально сконструированными турбинами.

Преимущества

10.Основное преимущество гидроэлектроэнергии является отсутствие затрат на топливо. На стоимость работы ГЭС почти не влияет увеличение стоимости ископаемого топлива, такого как нефть, природный газ или каменный уголь, а также не требуется никакого импортирования.

11.Гидроэлектростанции также обладают более длительным сроком службы по сравнению с генераторами, сжигающими топливо, некоторые станции, которые сейчас находятся в работе были построены от 50 до 100 лет тому назад. Обслуживающая стоимость также обычно находится на низком уровне, так как станции автоматизированы и имеют небольшое количество рабочего персонала во время нормальной работы.

12.В местах, где дамба служит для нескольких целей, гидроэлектростанция может быть сооружена со сравнительно низкой стоимостью, при условии, что доход будет возмещать стоимость работы дамбы. Было подсчитано, что продажа электричества с Three Gorges Dam покроет строительные затраты после 5 - 8 лет работы.

Совместная деятельность

13.Водохранилища, созданные гидроэлектростанциями часто обеспечивают благоприятные условия для водных видов спорта и привлекают к себе туристов. Многоцелевые дамбы используются для орошения, помогая сельскому хозяйству сравнительно постоянным водоснабжением. Большие водяные плотины могут контролировать наводнения, которые могли бы затронуть людей, живущих вниз по течению.

Недостатки

Ущерб окружающей среде

14.Гидроэлектростанции могут нарушать водные экосистемы как вверх по течению так и вниз по течению от места постройки станции. Например, исследования показали, что плотины вдоль побережья Атлантического и Тихого океанов у берегов Северной Америки снизили популяцию лососевых, закрыв им доступ к местам нереста, даже не смотря на то, что большинство плотин установили специальные подъёмники для рыбы. Икра лососевых также уничтожается во время миграции к морю, кода она должна пройти через турбины. Это привело к тому, что икру спускают вниз по течению на баржах в отдельное время года. В некоторых случаях плотины разрушают (например Marmot Dam разрушили в 2007) из-за влияния на рыбу. Турбины и электростанции проектируются таким образом, чтобы не создавать препятствий для водной жизни. Смягчающие меры, такие как подъёмники для рыбы обязательны на всех новых объектах, а также необходимы при релицензировании существующих объектов.

15.Производство гидроэлектроэнергии меняет окружающую среду вниз по течению реки. Вода выходящая из турбины обычно содержит очень маленькое количество осадков, в результате могут быть смыты дно и берега реки. Поскольку ворота турбины часто открываются нерегулярно, наблюдаются ежедневные колебания в скорости течения реки. Например, в Большом Каньоне, ежедневное циклическое изменение течения, вызванное Glen Canyon Dam, размывает песчаные отмели. Растворенный в воде кислород может повлиять на исходное состояние. В зависимости от размещения, вода, выходящая из турбины обычно теплее, чем до неё, это может повлиять на обитателей водной фауны и даже подвергнуть их опасности, а также препятствует естественному образованию льда. Некоторые гидроэлектростанции используют каналы, чтобы направлять реку на мелководье, тем самым увеличивая перепад. В некоторых случаях, целая река может быть направлена в другую строну, оставляя за собой высохшее русло. Например реки Tekapo и Pukaki.

Переселение населения

16.Другой недостаток гидроэлектростанций является необходимость переселения людей, живущих в зоне планируемого водохранилища. В Феврале 2008, было подсчитано, что 40-80 миллионов людей во всем мире были переселены непосредственно из-за строительства плотины. Во многих случаях, никакая сумма компенсации не может заменить потомственную и культурную привязанность к местам, откуда их пересилили. Кроме того, исторически и культурно важные места могут быть затоплены и потеряны. Подобные проблемы возникли в при строительстве Three Gorges Dam в Китае, Clyde Dam в Новой Зеландии и Ilısu Dam в Юго-восточной Турции.

Разрушившиеся плотины

17.Разрушение больших плотин, пока явление редкое, но потенциально опасное - разрушение Banqiao Dam в Южном Китае закончилось смертью 171,000 людей и появлением миллионов бездомных. Плотины могут подвергнуться бомбардировке в военное время, диверсии или террористическому акту. Маленькие плотины и микро ГЭС менее уязвимы к таким опасностям. Создание плотины в геологически неподходящем месте может вызвать бедствие подобно Vajont Dam в Италии, где погибло почти 2000 людей в 1963.

Влияние нехватки течения

18.Изменения в величине течения реки изменяет суммарную энергию произведенную плотиной. Из-за глобального потепления, уменьшаются объемы ледников, как например ледники North Cascades, которые потеряли трети их объема с 1950, результатом стало уменьшение потока на 34%. Результатом этого уменьшения стал дефицит мощности в области, сильно зависящей от гидроэлектрической энергии.

Сравнение с другими методами производства энергии

19.Гидроэлектроэнергия исключает газообразные выделения, образующиеся при сжигании горючего топлива, включающие в себя такие вещества как двуокись серы, окись азота, угарный газ, пыль, и ртуть в каменном угле. Гидроэлектроэнергия исключает риск, связанный с добычей угля и косвенное воздействие на здоровье угольных выделений. По сравнению с ядерной энергией, гидроэлектроэнергия не сознает радиоактивных отходов, не связана с опасной добычей урана и ядерными утечками. В отличие от урана, гидроэлектроэнергия является также возобновляемым источником энергии.

20.По сравнению с воздушными фермами, ГЭС имеет более предсказуемую движущую силу. Если построено водохранилище, то можно производить энергию, когда она необходима. ГЭС могут легко регулироваться, следуя за изменениями требуемой мощности.

21.В отличие от турбин, сжигающих ископаемое топливо, строительство ГЭС требует длительного времени для изучения места, гидрологического исследования и оценки влияния на окружающую среду. Гидрологические данные для больших ГЭС определяют место и режим функционирования вплоть до 50 лет или более. В отличие от станций работающих на топливе, таком как уголь или ядерная топливо, количество мест, где могут быть сконструированы ГЭС ограничено; в местах с наибольшей эффективной стоимостью они уже используются. Новые места для ГЭС удалены от населенных пунктов и требуют протяженных линий электропередач. Получение гидроэлектроэнергии зависит от количества осадков в водоразделе, и может быть значительно уменьшено в году из-за низкого количества осадков или таяния снега. Долгосрочное энергетическое производство может быть под влиянием перемен в климате. Первоначальная прибыль от использования гидроэлектроэнергии может быть использована для сооружения дополнительного объёма, гарантирующего достаточное количество мощности в годы с низким уровнем воды.

22.В частях Канады ( провинции Британская Колумбия, Манитоба, Онтарио, Квебек, Ньюфаундленд и Лабрадор) гидроэлектроэнергия используется так широко, что слово "гидро" часто используется, когда ссылаются на любую электроэнергию в энергосистеме общего пользования. Правительство называет энергосистемы в этих провинциях БК Гидро, Манитоба Гидро, Гидро Один (раньше “Онтарио Гидро”), Гидро-Квебек, Ньюфаундленд и Лабрадор Гидро соответственно. Hydro-Quеbec - самая большая в мире гидроэлектроэнергетическая компания, с установленной полной мощностью (2007) 35,647 МВт.