Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_po_ekologii.doc
Скачиваний:
3
Добавлен:
12.11.2019
Размер:
678.4 Кб
Скачать

Проблема происхождения жизни на Земле

Среди вопросов, которые интересуют науку, философию, религию, каждого человека, важнейшими являются: что такое жизнь? Как она появилась на Земле? Традиционно считается, что первые научные теории относительно происхождения живых организмов на Земле создали О. Опарин и Дж. Холдейн. В соответствии с их представлениями, на рассвете геологической истории состоялся абиогенный синтез, то есть в первоначальных земных океанах, насыщенных разными простыми химическими соединениями, «в первичном бульоне» под влиянием вулканического тепла, разрядов молний и других факторов среды начался синтез более сложных органических соединений и биополимеров. Сложные молекулы аминокислот случайно объединялись в пептиды, которые, в свою очередь, создали первоначальные белки. Из этих белков синтезировались первичные живые существа микроскопических размеров.

У этой и других подобных гипотез есть один существенный недостаток: нет ни одного факта, который бы подтвердил возможность абиогенного синтеза на Земле хотя бы простейшего живого организма из безжизненных соединений. В многочисленных лабораториях мира осуществлены тысячи попыток такого синтеза. Например, американский ученый С. Миллер, исходя из предположений относительно состава первичной атмосферы Земли, в специальном приборе пропускал электрические разряды через смесь метана, аммиака, водорода и паров воды. Ему удалось получить молекулы аминокислот - тех основных «кирпичиков», из которых складывается основа жизни — белки. Эти опыты были многократно повторены, кое-кому из ученых удалось получить довольно длинные цепочки пептидов (простых белков). И только! Ни одного хотя бы простейшего живого организма никому не посчастливилось синтезировать. Ныне среди ученых популярностью пользуется принцип Реди: «Живое - лишь от живого».

Но предположим, что такие попытки когда-то увенчаются успехом. Что докажет такой опыт? Лишь то, что для синтеза жизни нужны ум человека, сложная развитая наука и современная техника. Ничего этого на первоначальной Земле не было. Большее того, синтез сложных органических соединений из простых противоречит второму началу термодинамики, которая запрещает переход материальных систем от состояния большей вероятности к состоянию меньшей, а развитие от простых органических соединений к сложным, потом от бактерий к человеку происходил именно в этом направлении. Здесь мы наблюдаем ничто иное, как творческий процесс.

Противоречат теории абиогенного синтеза и геологические данные. Как бы далеко мы не проникали вглубь геологической истории, не находим следов «азойской эры», то есть периода, когда на Земле не существовало жизни. Сейчас палеонтологи в породах, век которых достигает 3,8 млрд лет, то есть близкий ко времени образования Земли (4-4,5 млрд лет тому назад по последним оценкам), нашли ископаемые остатки довольно сложно организованных существ - бактерий, сине-зеленых водорослей, простых грибков. В. Вернадский был уверен, что жизнь геологически вечна, то есть в геологической истории не было эпохи, если наша планета была безжизненной. «Проблема абиогенеза (спонтанного зарождения живых организмов), — писал ученый в 1938 г.,— остается бесплодной и парализует действительно назревшую научную работу».

Вернадский считал, что жизнь — такая же вечная основа космосу, которыми есть материя и энергия. «Мы знаем, и знаем это научно,— твердил он,— что Космос без материи, без энергии не может существовать». «...Можно говорить о вечности жизни и проявлений ее организмов, как можно твердить о вечности материального субстрата небесных тел, их тепловых, электрических, магнитных свойств и их проявлений. С этой точки зрения таким же далеким от научных поисков будет вопрос о начале жизни, как и вопрос о начале материи, теплоты, электрики, магнетизма, движения».

Исходя из представления о биосфере как о земном, но одновременно и космическом механизме, Вернадский связывал ее образование и эволюцию с организованностью Космоса. «Для нас становится понятно,— писал он,— что жизнь есть явление космическое, а не сугубо земное». Эту мысль Вернадский повторял многократно: «...начала жизни в том Космосе, который мы наблюдаем, не было, поскольку не было начала этого Космоса. Жизнь вечна, поскольку вечный Космос».

Земная форма жизни чрезвычайно тесно связанная с гидросферой. Об этом свидетельствует хотя бы тот факт, что вода является основной частью массы любого земного организма (человек, например, большее как на 70 % состоит из воды, а такие организмы, как медуза - на 97-98 %). Очевидно, что жизнь на Земле сформировалось лишь тогда, когда на ней появилась гидросфера, а это, по геологическим сведениям, произошло почти с начала существования нашей планеты. Многие из свойств живых организмов обусловлены именно свойствами воды, сама же вода является феноменальным соединением. Так, по данными П.Привалова, вода — это кооперативная система, в которой всякое действие распространяется «эстафетным» путем на тысячи междуатомных расстояний, то есть имеет место «далекодействие».

Некоторые ученые считают, что вся гидросфера Земли, в сущности, есть одна гигантская «молекула» воды. Установлено, что вода может активироваться естественными электромагнитными полями земного и космического происхождения. Чрезвычайно интересным было недавнее открытие французскими учеными «памяти воды». Возможно, то, что биосфера Земли является единым суперорганизмом, и обусловлено этими свойствами воды? Ведь все организмы — это составные части, «капли» этой супермолекулы земной воды.

Хотя нам до сих пор известна лишь земная белково-нуклеиново-водная жизнь, это не означает, что в безграничном Космосе не могут существовать другие его формы. Некоторые ученые, в частности американцы Г.Файнберг и Р.Шапиро, моделируют такие гипотетично возможные его варианты: плазмоиды - жизнь в звездных атмосферах за счет магнитных сил, связанных с группами подвижных электрических зарядов; радиобы — жизнь в межзвездных облаках на основе агрегатов атомов, которые находятся в разных состояниях возбуждения; лавобы — жизнь на основе соединений кремния, который может существовать в озерах расплавленной лавы на очень горячих планетах; водоробы — жизнь, которая может существовать при низких температурах на планетах, покрытых «водоемами» из жидкого метана, и черпать энергию из преобразований ортоводорода на параводород; термофаги — разновидность космической жизни, которые получают энергией из градиента температур в атмосфере или океанах планет.

Конечно, такие экзотические, на наш взгляд, формы жизни пока что существуют лишь в воображении ученых и писателей-фантастов. Тем не менее, не исключена возможность реального существования некоторых из них, в частности плазмоидов. Есть некоторые основания считать, что на Земле параллельно с «нашей» формой жизни существует другая ее разновидность, похожая на упомянутых плазмоидов. К ним относят некоторые виды НЛО (неопознанных летающих объектов), образование, похожие на шаровые молнии, а также невидимые для глаза, но фиксированные цветной фотопленкой летающие в атмосфере энергетические «сгустки», которые в ряде случаев проявляли разумное поведение.

Таким образом, сейчас есть основания утверждать, что жизнь на Земле появилась с самого начала ее существования и возникла «от всепроникающей общегалактической живой системы».

Круговороты веществ в биосфере.

В биосфере условно выделяют элементарные целостные единицы - биогеоценозы - совокупность популяций разных видов, обитающих в определенной местности. Биоценоз объединяет сообщества растительных и животных организмов, населяющих участок биосферы с однородными условиями существования. Взаимные связи внутри биогеоценоза поддерживаются в процессе круговорота веществ. Основное условие поддержания жизни в биосфере определяют живые организмы, осуществляя круговорот неорганических и органических веществ.

Биогеохимические циклы – это циркуляция химических элементов абиотического происхождения, которые попадают из окружающей среды в организмы и из организмов в окружающую среду. В биосфере все время совершаются круговороты воды и всех элементов, входящих в состав

живых организмов. Процесс этот длится десятки миллионов лет. “На земной поверхности нет химической силы, более постоянно действующей, а поэтому и более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом” - утверждал В. И. Вернадский.

Неорганические элементы вносятся в ткани растений и животных в процессе их роста и развития и входят в состав органических веществ. После смерти организма эти элементы подвергаются сложным превращениям, после чего снова попадают в новые организмы. К главным циклам относятся биохимические циклы углерода, азота, воды, фосфора и серы.

Кругооборот углерода и кислорода осуществляется в близко идущих процессах. При дыхании высвобождается углерод в виде СО2, а в процессе фотосинтеза СО2 снова превращается в органические соединения. Всего за 7-8 лет живые организмы пропускают через свои тела

весь углерод, содержащийся в атмосфере. В океане (в основном в составе фитопланктона) 40·1012 кг углерода в год фиксируется в процессе фотосинтеза в виде СО2. Большая его часть потом высвобождается при дыхании. На суше фиксируется в год 35·1012 кг углерода при фотосинтезе в виде СО2; 10·1012 кг углерода выделяется при дыхании растений и животных; 25·1012 кг углерода выделяется при дыхании редуцентов (Редуценты потребляют часть питательных веществ, разлагают мертвые тела растений и животных до простых химических соединений (воды, углекислого газа и минеральных солей), замыкая таким образом кругооборот веществ в биосфере.

5·1012 кг углерода в год высвобождается при сжигании ископаемого топлива. Этого количества вполне достаточно для постепенного увеличения концентрации двуокиси углерода в атмосфере и в океанах. Большая доля углерода содержится в осадочных породах. В последние годы поступление углерода в атмосферу вследствие деятельности человека резко возросло, что может привести к серьезным последствиям для биосферы.

Кругооборот азота имеет свое своеобразие. Известно, что в атмосфере содержится 79% азота, но сам азот как элемент очень инертен и поэтому редко встречается в связанном состоянии. Он входит в состав аминокислот и белков. В биологический круговорот азот атмосферы вовлекается в основном благодаря биологической фиксации микроорганизмами (азотфиксация). В атмосферу азот возвращается в результате денитрификации, которая осуществляется как при участии бактерий, так и в ходе химических реакций без участия организмов. Важно, что никакой другой элемент так не ограничивает ресурсы питательных веществ в экосистемах, как азот. Круговорот азота в большинстве сообществ замкнутый, лишь небольшие количества этого элемента выносятся из наземных сообществ со стоком (в масштабах биосферы реки выносят в океан около 30 млн.т азота в год).

Земная кора содержит много серы, растения ее получают в основном в виде сульфатов. Сера является необходимым компонентом почти всех белков. Животные восполняют потребности в сере, получая ее от растений. В годы интенсификации хозяйственной деятельности человека поступление серы в атмосферу все время возрастает (в виде, например, окислов серы - сернистого газа SO2).

Растворяясь в воде, окислы образуют кислоты. Имеет место выпадение кислотных дождей, приводящих к изменению экологической обстановки, часто с негативными последствиями.

Кругооборот фосфора менее сложен, поскольку его в газообразном состоянии нет. Миграция фосфора осуществляется за счет живых организмов, а значительная часть попадает в конечном счете в океан и откладывается в осадочных породах.

Фосфор - сравнительно мало распространенный элемент и, подобно азоту и калию, часто бывает фактором, лимитирующим продуктивность экосистем. Фосфор – необходимый компонент нуклеиновых кислот, АТФ, белков и ряда жизненно важных органических веществ.

Кругооборот воды осуществляется в основном за счет энергии Солнца, но организмы оказывают на него свое регулирующее действие. Вода является источником водорода, в которой водород химически связан с кислородом, а также донором водорода при фотосинтезе, а сама по себе она является составной частью живых клеток. Роль ее заключается также в том, что она - важный климатический фактор и среда для водных организмов. Круговорот воды называется гидрологическим циклом, и в этом цикле вода может находиться в газообразном, жидком и твердом состояниях. С поверхности океанов испаряется больше воды, чем выпадает над океанами в виде осадков. “Лишняя” испарившаяся вода переносится в виде пара атмосферными потоками, выпадает в виде осадков над сушей и поступает снова в океаны с поверхностным речным стоком и через грунтовые воды.

Доступная для наземных животных вода составляет ничтожную часть от ее общего количества - всего около 0.01%. Незначительная часть воды, проходящей через тела растений, разлагается при фотолизе воды на кислород, выделяемый в атмосферу, и водород, включаемый в состав органических веществ. Много больше воды растения расходуют на транспирацию (поглощают воду из почвы и испаряют в атмосферу).

Главнейшую роль в жизни на Земле играет непрерывно поступающий поток энергии Солнца: 10.5·1029 кДж/год (2.5·1020 ккал/год). 42% солнечной энергии отражается Землей в мировое пространство, 58% поглощается атмосферой и почвой. Из этого количества Землей излучается более 20%, а 10% расходуется на испарение воды с поверхности Мирового океана. Падающая на Землю солнечная энергия аккумулируется зелеными растениями и поступает с ними в другие организмы. Зеленые растения образуют в год около 100 млрд.т органического вещества, содержащего около 1800·1015 кДж (450·1015 ккал) энергии. Одновременно они поглощают около 170 млрд. т СО2, выделяют около 115 млрд.т О2 и испаряют 16·1012 т воды (цифры примерные, так как разные расчеты дают различающиеся данные).

Образование органических веществ за счет энергии Солнца - эндотермический процесс, а окисление - экзотермический процесс. Окисление органических веществ в процессах дыхания, брожения, гниения с выделением тепла, Н2О и СО2 имеет почти такие же масштабы, как и процесс фотосинтеза.

Солнечная энергия определяет масштабные климатические, геологические и биологические процессы. Под влиянием биосферы она преобразуется в различные формы энергии, вызывающие огромные по масштабам и скорости превращения, миграции и круговороты веществ, увеличение и распространение биомассы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]